30 April 2011

GEMPA BUMI DI INDONESIA


Kepulauan Indonesia adalah salah satu wilayah yang memiliki kondisi geologi yang menarik. Menarik karena gugusan kepulauannya dibentuk oleh tumbukan lempeng-lempeng tektonik besar. Tumbukan Lempeng Eurasia dan Lempeng India-Australia mempengaruhi Indonesia bagian barat, sedangkan pada Indonesia bagian timur, dua lempeng tektonik ini ditubruk lagi oleh Lempeng Samudra Pasifik dari arah timur. Kondisi ini tentunya berimplikasi banyak terhadap kehidupan yang berlangsung di atasnya hingga saat ini. Mari kita perhatikan gambar-gambar di bawah ini.

Kondisi Tektonik di Kepulauan Indonesia
Gambar di atas menunjukkan kondisi tektonik Kepulauan Indonesia. Garis merah, jingga dan hijau menunjukkan batas-batas lempeng tektonik. Garis merah menunjukkan pemekaran lantai samudra. Garis jingga menunjukkan pensesaran relatif mendatar. Sedangkan garis hijau menunjukkan tumbukan/penunjaman antar lempeng tektonik.
Mari kita perhatikan satu per satu. Garis hijau di sebelah barat Pulau Sumatra dan di sebelah selatan Pulau Jawa, menerus hingga ke Laut Banda, sebelah selatan Flores kemudian membelok ke utara menuju Laut Arafuru (utara Maluku) menunjukkan zona penunjaman Lempeng Hindia-Australia dan Lempeng Eurasia.
Kenapa membelok ke Laut Arafuru ya ?
Kalo terus ntar nabrak Papua donk …hehe
Karena di Indonesia bagian timur ini ada lagi Lempeng Samudra Pasifik yang menubruk dari arah timur. Salah satu korban paling parah dari tubrukan tiga lempeng ini adalah Pulau Sulawesi. Tangan-tangannya pada mlintir gak karuan. Ditambah lagi terbentuknya luka sesar mendatar di bagian tengah Pulau Sulawesi.
Penunjaman yang terjadi di sebelah barat Sumatra tidak benar-benar tegak lurus terhadap arah pergerakan Lempeng India-Australia dan Lempeng Eurasia. Lempeng Eurasia bergerak relatif ke arah tenggara, sedangkan Lempeng India-Australia bergerak relatif ke arah timurlaut. Karena tidak tegak lurus inilah maka Pulau Sumatra dirobek sesar mendatar (garis jingga) yang dikenal dengan nama Sesar Semangko.
Di sebelah utara Aceh, ada proses pemekaran lantai samudra (garis merah). Saya rasa itu terjadi sebagai bagian dari proses Escape Tectonics akibat tumbukan Lempeng Anak Benua India terhadap Lempeng Eurasia.
Di sebelah utara Papua juga terbentuk zona penunjaman akibat tumbukan Lempeng Samudra Pasifik terhadap Lempeng India-Australia. Pada bagian Kepala Burung, Papua, ini juga terbentuk sesar mendatar (garis warna jingga) yang dikenal dengan nama Sesar Sorong. Masih menjadi perdebatan apakah penyebab Gempa Papua 4 Januari 2009 yang lalu. Sebagian ahli menyebutkan pergerakan aktif Sesar Sorong ini yang menyebabkan gempa, sebagian lagi menyebutkan gempa bersumber dari zona penunjaman di sebelah utara Sesar Sorong. Mengikuti perdebatan para ahli geologi bisa dilihat di blog Dongeng Geologi-nya Pakdhe Rovicky.
Zona penunjaman (warna hijau) yang terbentuk di Samudra Pasifik umumnya sebagai akibat benturan Lempeng Samudra Pasifik dengan Lempeng Eurasia. Sedangkan zona pemekaran (warna merah) sebagai akibat ikutan proses Escape Tectonics setelah terjadinya tumbukan.
Apa implikasinya dari proses tektonik yang begitu rumit tersebut ? Kita lihat gambar kedua.

Sebaran Gunungapi dan Titik Pusat Gempa di Kepulauan Indonesia
Gambar di atas menunjukkan sebaran gunungapi (segitiga merah), titik gempa (tanda plus ungu) dan hot spot (tanda bintang jingga). Apa yang terjadi mudah ditebak kan! Rangkaian gunungapi dan titik gempa selalu berasosiasi dengan zona penunjaman. Animasi proses penunjamannya bisa dilihat pada postingan sebelumnya (lihat Animasi Mekanisme Penunjaman Kerak Samudra). Pulau Sumatra, Jawa, Flores, Maluku, Sulawesi dan bagian utara Papua akan rawan dengan gunungapi dan gempa. Emang sudah dari sono-nya begitu. Hanya Pulau Kalimantan yang relatif adem-ayem karena memang posisinya gak dekat-dekat dengan TKP …hehe. (cuma sering banjir tiap tahun, ditambah lagi kebakaran hutan)
Namun tidak seluruhnya kita anggap bencana. Erupsi gunungapi yang berupa abu gunungapi membawa unsur hara yang menyuburkan tanah. Makanya tanah di Jawa pada subur. Tanam padi tumbuh padi (ya iyalah…masak ya iya donk!). Intrusi-intrusi dangkal di sekitar gunungapi menyediakan energi panas bumi yang sangat besar yang bisa dimanfaatkan sebagai pembangkit listrik. Endapan mineral logam, seperti emas, tembaga dan nikel, akan banyak dijumpai berasosiasi dengan lingkungan gunungapi (lihat tulisan Pak Awang Satyana di Plate Tectonics : Tidak Seluruhnya Bencana). Kita belum bicara tentang potensi migas dan batubara lho ya! Konteksnya agak sedikit berbeda.
SUMBER:http://yudi81.wordpress.com/2009/01/17/tektonik-indonesia-kondisi-dan-potensinya/
href="http://yudi81.files.wordpress.com/2009/01/indovolcanic_eq.jpg?w=440&h=326">


href="http://yudi81.files.wordpress.com/2009/01/indotectonic.jpg?w=440&h=321">

Lempeng Indonesia
Indonesia merupakan daerah pertemuan 3 lempeng tektonik besar, yaitu lempeng Indo-Australia, Eurasia dan lempeng Pasific. Lempeng Indo-Australia bertabrakan dengan lempeng Eurasia di lepas pantai Sumatra, Jawa dan Nusatenggara, sedangkan dengan Pasific di utara Irian dan Maluku utara. Di sekitar lokasi pertemuan lempeng ini akumulasi energi tabrakan terkumpul sampai suatu titik dimana lapisan bumi tidak lagi sanggup menahan tumpukan energi sehingga lepas berupa gempa bumi. Pelepasan energi sesaat ini menimbulkan berbagai dampak terhadap bangunan karena percepatan gelombang seismik, tsunami, longsor, dan liquefaction. Besarnya dampak gempa bumi terhadap bangunan bergantung pada beberapa hal; diantaranya adalah skala gempa, jarak epicenter, mekanisme sumber, jenis lapisan tanah di lokasi bangunan dan kualitas bangunan.

Peristiwa tektonik yang cukup aktif, selain menimbulkan gempa dan tsunami, juga membawa berkah dengan terbentuknya banyak cekungan sedimen (sedimentary basin). Cekungan ini mengakomodasikan sedimen yang selanjutnya menjadi batuan induk maupun batuan reservoir hydrocarbon. Kadungan minyak dan gas alam inilah yang kini banyak kita tambang dan menjadi tulang punggung perekonomian kita sehingga tahun 1990-an.

Peta Tektonik dan Gunung Berapi di Indonesia. Garis biru melambangkan batas antar lempeng tektonik, dan segitiga merah melambangkan kumpulan gunung berapi. Sumber: MSN Encarta Encyclopedia

Indonesia, juga merupakan negara yang secara geologis memiliki posisi yang unik karena berada pada pusat tumbukan Lempeng Tektonik Hindia Australia di bagian selatan, Lempeng Eurasia di bagian Utara dan Lempeng Pasifik di bagian Timur laut. Hal ini mengakibatkan Indonesia mempunyai tatanan tektonik yang komplek dari arah zona tumbukan yaitu Fore arc, Volcanic arc dan Back arc. Fore arc merupakan daerah yang berbatasan langsung dengan zona tumbukan atau sering di sebut sebagai zona aktif akibat patahan yang biasa terdapat di darat maupun di laut. Pada daerah ini material batuan penyusun utama lingkungan ini juga sangat spesifik serta mengandung potensi sumberdaya alam dari bahan tambang yang cukup besar. Volcanic arc merupakan jalur pegunungan aktif di Indonesia yang memiliki topografi khas dengan sumberdaya alam yang khas juga. Back arc merupakan bagian paling belakang dari rangkaian busur tektonik yang relatif paling stabil dengan topografi yang hampir seragam berfungsi sebagai tempat sedimentasi. Semua daerah tersebut memiliki kekhasan dan keunikan yang jarang ditemui di daerah lain, baik keanegaragaman hayatinya maupun keanekaragaman geologinya.

Indonesia merupakan negara yang secara geologis memiliki posisi yang unik karena berada pada pusat tumbukan Lempeng Tektonik Hindia Australia di bagian selatan, Lempeng Eurasia di bagian Utara dan Lempeng Pasifik di bagian Timur laut. Lempeng Indo-Australia bertabrakan dengan lempeng Eurasia di lepas pantai Sumatra, Jawa dan Nusatenggara, sedangkan dengan Pasific di utara Irian dan Maluku utara. Hal ini mengakibatkan Indonesia mempunyai tatanan tektonik yang komplek dari arah zona tumbukan yaitu Fore arc, Volcanic arc dan Back arc. Fore arc merupakan daerah yang berbatasan langsung dengan zona tumbukan atau sering di sebut sebagai zona aktif akibat patahan yang biasa terdapat di darat maupun di laut. Pada daerah ini material batuan penyusun utama lingkungan ini juga sangat spesifik serta mengandung potensi sumberdaya alam dari bahan tambang yang cukup besar.


Ada dua hal utama yang membedakan antara Bumi dengan planet-planet yang lain di dalam Sistem Tata Surya, yaitu:

1) Bumi memiliki air dalam jumlah besar dan membentuk sub-sistem hidrosfer sedang planet-planet yang lain tidak memiliki air. Dengan kata lain, hidrosfer hanya dijumpai di Bumi dan tidak dijumpai di planet-planet yang lain.

2) Di Bumi terdapat fenomena tektonik lempeng sedang di planet-planet yang lain tidak ada. Fenomena tektonik lempeng mengindikasikan bagian internal Bumi yang cair dan memiliki energi panas yang tinggi.

Berlangsungnya siklus hidrologi, siklus batuan dan siklus tektonik di Bumi berkaitan erat dengan keberadaan dua hal tersebut. Siklus hidrologi tidak dapat berlangsung bila di Bumi tidak ada hidrosfer, sedang siklus batuan dan tektonik tidak dapat berlangsung bila tidak ada tektonik lempeng. Dengan demikian, bila keberadaan hidrosfer dan tektonik lempeng hanya ada di Bumi, maka ketiga siklus tersebut hanya berlangsung di Bumi dan tidak dapat berlangsung di planet-planet yang lain.
Tsunami adalah fenomena gelombang raksasa yang melanda ke daratan. Fenomena ini dapat terjadi karena gempa bumi atau gangguan berskala besar di dasar laut, seperti longsoran bawah laut atau erusi letusan gunungapi di bawah laut (Skinner dan Porter, 2000). Gelombang tsunami dapat merambat sangat cepat (dapat mencapai kecepatan 950 km/jam), panjang gelombangnya sangat panjang (dapat mencapat panjang 250 km). Di samudera, tinggi gelombang tsunami cukup rendah sehingga sulit diamati, dan ketika mencapai perairan dangkal ketinggiannya dapat mencapai 30 m. Sifat kedatangan gelombang tsunami sangat mendadak dan tidak adanya sistem peringatan dini merupakan penyebab dari banyaknya korban jiwa yang jatuh ketika gelombang tsunami melanda ke daratan pesisir yang banyak penduduknya. Contoh yang paling mutakhir peristiwa kencana tsunami ini adalah ketika tsunami melanda pesisir barat dan utara Pulat Sumatera di Propinsi Nanggroe Aceh Darussalam pada tanggal 26 Desember 2004.

Tsunami yang terjadi karena gempa bumi atau longsoran di bawah laut kejadiannya berkaitan erat dengan sistem interaksi lempeng kerak bumi yang membentuk sistem penunjaman dan palung laut dalam. Sementara itu, tsunami yang terjadi karena erupsi letusan gunungapi kejadiannya berkaitan erat dengan kehadiran gunungapi bawah laut, baik yang muncul di permukaan laut maupun yang tidak muncul di permukaan laut. Dengan demikian, potensi suatu kawasan pesisir untuk dilanda tsunami dapat diperhitungkan dari keberadaan sistem penunjaman lempeng yang membentuk palung laut dalam, dan keberadaan gunungapi bawah laut. Meskipun demikian, kita tidak dapat melakukan prediksi tentang kapan akan terjadinya tsunami karena kita tidak dapat melakukan prediksi tentang kapan terjadinya gempa, longsoran bawah lautm atau letusan gunungapi bawah laut yang dapat mencetuskan tsunami.

Dalam sejarah moderen, di Indonesia pernah terjadi tsunami karena erupsi letusan gunungapi, yaitu ketika Gunung Krakatau di Selat Sunda meletus pada tahun 1883. Sementara itu, tsunami yang terjadi karena londsoran bawah laut pernah terjadi pada tahun 1998 di sebelah utara Papua New Guinea (Synolakis dan Okal, 2002; Monastersky, 1999).

Dari uraian tentang tsunami dan berbagai pencetusnya itu, maka kita dapat menentukan kawasan-kawasan pesisir yang potensial untuk terlanda tsunami, yaitu dengan memperhitungkan posisi kawasan-kawasan pesisir terhadap keberadaan sistem penunjaman dan palung laut dalam, serta kehadiran gunungapi bawah laut, meskipun kita tidak dapat menentukan kapan tsunami akan terjadi. Bagi Kepulauan Indonesia, posisi geografisnya yang diapit oleh dua samudera (Samudera Pasifik dan Hindia), serta posisi tektonik yang terletak di kawasan interaksi tiga lempeng kerak bumi utama, dan kehadiran gunungapi bawah laut membuatnya menjadi sangat potensial untuk terkena bencana tsunami. Gambaran tentang kejadian tsunami di Indonesia dalam dua dekade terakir dapat dilihat pada Tabel 3 dan Gambar 1. Secara garis besar dapat dikatakan bahwa kawasan-kawasan pesisir Indonesia yang sangat berpotensi terkena tsunami adalah:

1) Kawasan pesisir dari pulau-pulau yang menghadap ke Samudera Pasifik dan Samudera Hindia. Potensi sumber kejadian tsunami yang utama di kawasan-kawasan itu adalah sistem penunjamanyang ada di hadapan kawasan-kawasan pesisir itu.

2) Kawasan pesisir dari pulau-pulau di kawasan Laut Banda. Di kawasan ini, tsunami dapat berasal dari kawasan Busur Banda maupun berasal dari Samudera Pasifik atau Samudera Hindia yang masuk ke kawasan itu.

3) Kawasan pesisir pulau-pulau yang berhadapan dengan gunungapi bawah laut, seperti kawasan pesisir di kedua sisi Selat Sunda yang mengelilingi Gunung Krakatau.
Tuhan menciptakan alam semesta beserta isinya, termasuk Bumi dan makhluk-makhluk yang ada di dalamnya, termasuk manusia.

Energi-penggerak Dasar

Untuk “menghidupkan” ciptaannya, Tuhan memberikan kepada semua ciptaannya suatu “kondisi” yang membuat semuanya dapat bergerak secara otomatis. Semua itu dimulai dari partikel-partikel subatomik. Partikel-partikel subatomik menyusun apa yang kita kenal sebagai tiga komponen atom, yaitu: proton, neutron dan elektron. Selanjutnya, atom-atom menyusun apa yang disebut sebagai unsur. Kita mengenal 92 unsur alamiah (lihat Tabel Periodik).

Unsur-unsur alamiah kemudian membentuk mineral-mineral, dan mineral-mineral berkombinasi membentuk berbagai jenis batuan.

Tuhan memberikan kekuatan kepada partikel-partikel subatomik, dan demikian pula kepada ketiga komponen atom. Dengan kekuatan-kekuatan tersebut semuanya bergerak, alam semesta, termasuk menggerakkan kehidupan di Bumi.

Proses alam berlangsung sesuai dengan ketetapan penciptanya. Partikel-partikel subatomik terus berinteraksi tanpa bisa diganggu oleh manusia. Demikian pula dengan elektron yang selalu bergerak mengelilingi inti atom. Reaksi fission (“fission”, the splitting of a nucleus into two “daughter” nuclei), fusion (“fusion” of two “parent” nuclei into one daughter nucleus), penangkapan neutron (“neutron capture”, used to create radioactive isotopes), dan peluruhan (various “decay modes”, in which nuclei “spontaneously” eject one or more particles and lose energy to become nuclei of lighter atoms), semua terus berlangsung di alam semesta, termasuk di Bumi yang kita diami ini. Kelanjutannya adalah semua proses alam terus berlangsung, baik disukai maupun tidak oleh manusia, mengikuti ketentuan penciptanya.

Pada tahapan yang lebih jauh, Bumi, dihidupkan dengan gerakan lempeng-lempeng kerak bumi, volkanisme, tiupan angin, hujan, sinar matahari, fotosintesis, metabolisme sel. Disukai atau tidak disukai oleh manusia, semua proses itu terus berjalan sesuai dengan ketetapan Tuhannya. Semua itu tidak terlepas dari proses-proses dasar yang berlangsung pada tingkat atomik.

Akal untuk memahami Proses Alam

Manusia diberi pikiran dan akal oleh Tuhan untuk dapat memahami alam, termasuk proses-prosesnya. Pemahaman manusia akan alam dan kemampauan memanfaatkannya dengan bijaksana menentukan tingkat kesejahteraan manusia itu sendiri. Sebaliknya, kegagalan manusia dalam memahami alam akan menyebabkan manusia mengalami hal yang sebaliknya. Manusia akan sengsara. Contoh yang sederhana adalah api. Pembakaran api yang terkendali telah terbukti memberikan manfaat yang sangat banyak bagi kehidupan manusia. Mulai dari memasak di dapur, sampai meluncurkan pesawat ke ruang angkasa. Sebaliknya, pembakaran yang tidak dikendalikan juga telah terbukti menimbulka kerugian, seperti kebakaran rumah atau bangunan, kebakaran atau pembakaran hutan.

Ketika proses-proses alam itu berlangsung dan mengenai manusia, manusia mengatakan itu sebagai bencana, seakan-akan proses itu memang ditujukan untuk membuat manusia menderita, sengsara atau mengalami kerugian. Tulisan ini memberikan gambaran tentang berbagai proses alam tersebut berkaitan dengan berlangsungnya kehidupan di Bumi ini.

Ozon






Ozon terdiri dari tiga molekul oksigen dan amat berbahaya pada kesehatan manusia. Secara alamiah, ozon dihasilkan melalui percampuran cahaya ultraviolet dengan atmosfer bumi dan membentuk suatu lapisan ozon pada ketinggian 50 kilometer.
Kepentingan Ozon

Ozon tertumpu di bawah stratosfer di antara 15 dan 30 km di atas permukaan bumi yang dikenal sebagai 'lapisan ozon'. Ozon dihasilkan dengan pelbagai persenyawaan kimia, tetapi mekanisme utama penghasilan dan perpindahan dalam atmosfer adalah penyerapan tenaga sinar ultraviolet (UV) dari matahari.
Ozon (O3) dihasilkan apabila O2 menyerap sinar ultraviolet pada jarak gelombang 242 nanometer dan disingkirkan dengan fotosintesis dari sinar bagi jarak gelombang yang besar dari 290 nm. O3 juga merupakan penyerap utama sinar UV antara 200 dan 330 nm. Penggabungan proses-proses ini efektif dalam meneruskan kekonstanan bilangan ozon dalam lapisan dan penyerapan 90% sinar UV.

Sifat ozon
Ozon amat mengkakis dan dipercayai sebagai bahan beracun dan bahan cemar biasa. Ozon mempunyai bau yang tajam, menusuk hidung. Ozon juga terbentuk pada kadar rendah dalam udara akibat arus listrik seperti kilat, dan oleh tenaga tinggi seperti radiasi eletromagnetik.
UV dikaitkan dengan pembentukan kanker kulit dan kerusakan genetik. Peningkatan tingkat uv juga mempunyai dampak kurang baik terhadap sistem imunisasi hewan, organisme akuatik dalam rantai makanan, tumbuhan dan tanaman. Penyerapan sinar UV berbahaya oleh ozon stratosfer amat penting untuk seluruh bumi.

Ozon di muka bumi
Ozon di muka bumi terbentuk oleh sinar ultraviolet yang menguraikan molekul O3 membentuk unsur oksigen. Unsur oksigen ini bergabung dengan molekul yang tidak terurai dan membentuk O3. Kadangkala unsur oksigen akan bergabung dengan N2 untuk membentuk nitrogen oksida; yang apabila bercampur dengan cahaya mampu membentuk ozon.

Lapisan ozon
Ozon adalah salah satu gas yang membentuk atmosfer. Molekul oksigen (O2) yang dengannya kita bernafas membentuk hampir 20% atmosfer. Pembentukan ozon (O3), molekul triatom oksigen kurang banyak dalam atmosfer di mana kandungannya hanya 1/3.000.000 gas atmosfer.

Kepentingan ozon
Ozon tertumpu di bawah stratosfer di antara 15 dan 30 km di atas permukaan bumi yang dikenal sebagai 'lapisan ozon'. Ozon terhasil dengan berbagai percampuran kimiawi, tetapi mekanisme utama penghasilan dan perpindahan dalam atmosfer adalah penyerapan tenaga sinar ultraviolet (UV) dari matahari.
Ozon (O3) dihasilkan apabila O2 menyerap sinar UV pada jarak gelombang 242 nanometer dan disingkirkan dengan fotosintesis dari sinar bagi jarak gelombang yang besar dari 290 nm. O3 juga merupakan penyerap utama sinar UV antara 200 dan 330 nm. Penggabungan proses-proses ini efektif dalam meneruskan ketetapan bilangan ozon dalam lapisan dan penyerapan 90% sinar UV.
UV dikaitkan dengan pembentukan kanker kulit dan kerusakan genetik. Peningkatan tingkat UV juga mempunyai dampak kurang baik terhadap sistem imunisasi hewan, organisme akuatik dalam rantai makanan, tumbuhan dan tanaman.
Penyerapan sinaran UV berbahaya oleh ozon stratosfer amat penting untuk semua hidupan di bumi.

Keseimbangan ozon
Jumlah ozon dalam atmosfer berubah menurut lokasi geografi dan musim. Ozon ditentukan dalam satuan Dobson (Du) di mana, sebagai contoh, 300 Du setara dengan 3 mm tebal lapisan ozon yang tulen jika dimampatkan ke tekanan permukaan laut.
Sebagian besar ozon stratosfer dihasilkan di kawasan tropis dan diangkut ke ketinggian yang tinggi dengan skala-besar putaran atmosfer semasa musim salju hingga musim semi. Umumnya kawasan tropis memiliki ozon yang rendah.

Kegunaan ozon
Ozon digunakan dalam bidang pengobatan untuk mengobati pasien dengan cara terawasi dan mempunyai penggunaan yang meluas seperti di Jerman. Di antaranya ialah untuk perawatan kulit terbakar.
Sedangkan dalam perindustrian, ozon digunakan untuk:
mengenyahkan kuman sebelum dibotolkan (antiseptik),
menghapuskan pencemaran dalam air (besi, arsen, hidrogen sulfida, nitrit, dan bahan organik kompleks yang dikenal sebagai warna),
membantu proses flokulasi (proses pengabungan molekul untuk membantu penapis menghilangkan besi dan arsenik),
mencuci, dan memutihkan kain (dipaten),
membantu mewarnakan plastik,
menentukan ketahanan getah.

Ancaman dari klorofluorokarbon (CFC)
Ancaman yang diketahui terhadap keseimbangan ozon adalah kloroflorokarbon (CFC) buatan manusia yang meningkatkan kadar penipisan ozon menyebabkan kemerosotan berangsur-angsur dalam tingkat ozon global.
CFC digunakan oleh masyarakat modern dengan cara yang tidak terkira banyaknya, dalam kulkas, bahan dorong dalam penyembur, pembuatan busa dan bahan pelarut terutama bagi kilang-kilang elektronik.
Masa hidup CFC berarti 1 molekul yang dibebaskan hari ini bisa ada 50 hingga 100 tahun dalam atmosfer sebelum dihapuskan.
Dalam waktu kira-kira 5 tahun, CFC bergerak naik dengan perlahan ke dalam stratosfer (10 – 50 km). Di atas lapisan ozon utama, pertengahan julat ketinggian 20 – 25 km, kurang sinar UV diserap oleh ozon. Molekul CFC terurai setelah bercampur dengan UV, dan membebaskan atom klorin. Atom klorin ini juga berupaya untuk memusnahkan ozon dan menghasilkan lubang ozon.

Dampak akibat penipisan ozon
Lubang Ozon
Artikel utama untuk bagian ini adalah: Lubang ozon
Lubang ozon di Antartika disebabkan oleh penipisan lapisan ozon antara ketinggian tertentu seluruh Antartika pada musim semi. Pembentukan 'lubang' tersebut terjadi setiap bulan September dan pulih ke keadaan normal pada lewat musin semi atau awal musim panas.
Dalam bulan Oktober 1987, 1989, 1990 dan 1991, lubang ozon yang luas telah dilacak di seluruh Antartika dengan kenaikan 60% pengurangan ozon berbanding dengan permukaan lubang pra-ozon. Pada bulan Oktober 1991, permukaan terendah atmosfer ozon yang pernah dicatat telah terjadi di seluruh Antartika.

Kemerosotan ozon global
Pengukuran latar dan satelit menunjukkan pengurangan signifikan terhadap jumlah kolom ozon pada musim dingin dan panas bagi kedua hemisfer utara dan selatan pada garis lintang tengah dan tinggi. Didapati aliran ke bawah ini pada tahun 1980 agak besar bila dibandingkan dengan tahun 1970. Tiada statistik aliran signifikan dapat ditentukan bagi kawasan tropika semasa tahun 1980. Dengan kemajuan komputer model bagi pemusnahan stratosfer ozon dapat menjelaskan pemerhatian aliran jumlah ozon di ketinggian pertengahan pada musim panas, tetapi hanya sebagian darinya pada musin sejuk. Ini bermakna pada masa depan perubahan global ozon belum bisa diramalkan lagi.

Satelit
Penggunaan satelit mengelilingi kutub seperti Satelit NASA Nimbus7 yang membawa peralatan "Total Ozone Mapping Spectrometer" (TOMS) telah merevolusikan pemantauan ozon sejak 20 tahun yang lalu. Kedudukan yang baik di atas cakrawala dan kemampuan setiap satelit untuk perjalanan mendatar seluruh dunia, menyediakan liputan yang lebih baik dari stasiun darat. Ini sangat tinggi nilainya untuk menentukan aliran global. Ketepatan sensor satelit menggunakan prinsip yang sama dengan spektrofotometer Dobson.

Spektrofotometer Dobson
Spektrofotometer pertama diciptakan pada tahun 1920 oleh Gordon Dobson untuk mengukur jumlah ozon. Kini terdapat kurang lebih 80 jenis alat ini untuk digunakan di seluruh dunia dalam mengukur jumlah ozon. Spektrofotometer Dobson mengukur ozon dengan membandingkan jumlah penyinaran pada jarak dua UV. Satu jarak gelombang terlacak kuat dengan ozon manakala yang satu lagi tidak. Perbedaan antara jumlah dua sinar secara langsung berhubungan dengan jumlah ozon.

Ozon sonde
Ozon sonde adalah sel elektrokimia dan penghantar radio yang dilekatkan kepada balon yang berisi gas hidrogen yang dapat mencapai ketinggian kira-kira 35 km. Udara dimasukkan ke dalam sel kecil dengan pompa. Pelarut dalam sel bercampur dengan ozon, menghasilkan arus eletrik yang berkadar sama dengan jumlah ozon. Isyarat dari sel diubah atas kode dan diantarkan melalui radio kepada penerima stasiun. Dari pelepasan balon hingga kegagalan, lazimnya kira-kira 35 km, sonde ini menyediakan taburan menegak ozon.

Lubang ozon di Antartika disebabkan oleh penipisan lapisan ozon antara ketinggian tertentu seluruh Antartika pada musim semi. Pembentukan 'lubang' tersebut terjadi setiap bulan September dan pulih ke keadaan normal pada lewat musin semi atau awal musim panas.
Dalam bulan Oktober 1987, 1989, 1990 dan 1991, lubang ozon yang luas telah dilacak di seluruh Antartika dengan kenaikan 60% pengurangan ozon berbanding dengan permukaan lubang pra-ozon. Pada bulan Oktober 1991, permukaan terendah atmosfer ozon yang pernah dicatat telah terjadi di seluruh Antartika.

Kemerosotan ozon global
Pengukuran latar dan satelit menunjukkan pengurangan signifikan terhadap jumlah kolom ozon pada musim dingin dan panas bagi kedua hemisfer utara dan selatan pada garis lintang tengah dan tinggi. Didapati aliran ke bawah ini pada tahun 1980 agak besar bila dibandingkan dengan tahun 1970. Tiada statistik aliran signifikan dapat ditentukan bagi kawasan tropika semasa tahun 1980. Dengan kemajuan komputer model bagi pemusnahan stratosfer ozon dapat menjelaskan pemerhatian aliran jumlah ozon di ketinggian pertengahan pada musim panas, tetapi hanya sebagian darinya pada musin sejuk. Ini bermakna pada masa depan perubahan global ozon belum bisa diramalkan lagi.

Satelit
Penggunaan satelit mengelilingi kutub seperti Satelit NASA Nimbus7 yang membawa peralatan "Total Ozone Mapping Spectrometer" (TOMS) telah merevolusikan pemantauan ozon sejak 20 tahun yang lalu. Kedudukan yang baik di atas cakrawala dan kemampuan setiap satelit untuk perjalanan mendatar seluruh dunia, menyediakan liputan yang lebih baik dari stasiun darat. Ini sangat tinggi nilainya untuk menentukan aliran global. Ketepatan sensor satelit menggunakan prinsip yang sama dengan spektrofotometer Dobson.

Spektrofotometer Dobson
Spektrofotometer pertama diciptakan pada tahun 1920 oleh Gordon Dobson untuk mengukur jumlah ozon. Kini terdapat kurang lebih 80 jenis alat ini untuk digunakan di seluruh dunia dalam mengukur jumlah ozon. Spektrofotometer Dobson mengukur ozon dengan membandingkan jumlah penyinaran pada jarak dua UV. Satu jarak gelombang terlacak kuat dengan ozon manakala yang satu lagi tidak. Perbedaan antara jumlah dua sinar secara langsung berhubungan dengan jumlah ozon.

Ozon sonde
Ozon sonde adalah sel elektrokimia dan penghantar radio yang dilekatkan kepada balon yang berisi gas hidrogen yang dapat mencapai ketinggian kira-kira 35 km. Udara dimasukkan ke dalam sel kecil dengan pompa. Pelarut dalam sel bercampur dengan ozon, menghasilkan arus eletrik yang berkadar sama dengan jumlah ozon. Isyarat dari sel diubah atas kode dan diantarkan melalui radio kepada penerima stasiun. Dari pelepasan balon hingga kegagalan, lazimnya kira-kira 35 km, sonde ini menyediakan taburan menegak ozon.

Tindakan dunia
Dalam tahun 1975, dikhawatirkan aktivitas manusia akan mengancam lapisan ozon. Oleh itu atas permintaan "United Nations Environment Programme" (UNEP), WMO memulai Penyelidikan Ozon Global dan Proyek Pemantauan untuk mengkoordinasi pemantauan dan penyelidikan ozon dalam jangka panjang.
Semua data dari tapak pemantauan di seluruh dunia diantarkan ke Pusat Data Ozon Dunia di Toronto, Kanada, yang tersedia kepada masyarakat ilmiah internasional.
Pada tahun 1977, pertemuan pakar UNEP mengambil tindakan Rencana Dunia terhadap lapisan ozon; dalam tahun 1987, UNEP mengambil Protokol Montreal atas bahan yang mengurangi lapisan ozon.
Protokol ini memperkenalkan serangkaian kapasitas, termasuk jadwal tindakan, mengawasi produksi dan pembebasan CFC ke alam sekitar. Ini memungkinkan tingkat penggunaan dan produksi terkait CFC untuk turun ke tingkat semasa 1986 pada tahun 1989, dan pengurangan sebanyak 50% pada 1999.

Lapisan ozon adalah lapisan di atmosfer pada ketinggian 19 - 48 km (12 - 30 mil) di atas permukaan Bumi yang mengandung molekul-molekul ozon. Konsentrasi ozon di lapisan ini mencapai 10 ppm dan terbentuk akibat pengaruh sinar ultraviolet Matahari terhadap molekul-molekul oksigen. Peristiwa ini telah terjadi sejak berjuta-juta tahun yang lalu, tetapi campuran molekul-molekul nitrogen yang muncul di atmosfer menjaga konsentrasi ozon relatif stabil.
Ozon adalah gas beracun sehingga bila berada dekat permukaan tanah akan berbahaya bila terhisap dan dapat merusak paru-paru. Sebaliknya, lapisan ozon di atmosfer melindungi kehidupan di Bumi karena ia melindunginya dari radiasi sinar ultraviolet yang dapat menyebabkan kanker. Oleh karena itu, para ilmuan sangat khawatir ketika mereka menemukan bahwa bahan kimia kloro fluoro karbon (CFC) yang biasa digunakan sebagai media pendingin dan gas pendorong spray aerosol, memberikan ancaman terhadap lapisan ini. Bila dilepas ke atmosfer, zat yang mengandung klorin ini akan dipecah oleh sinar Matahari yang menyebabkan klorin dapat bereaksi dan menghancurkan molekul-molekul ozon. Setiap satu molekul CFC mampu menghancurkan hingga 100.000 molekul ozon. Oleh karena itu, penggunaan CFC dalam aerosol dilarang di Amerika Serikat dan negara-negara lain di dunia. Bahan-bahan kimia lain seperti bromin halokarbon, dan juga nitrogen oksida dari pupuk, juga dapat menyerang lapisan ozon.
Menipisnya lapisan ozon dalam atmosfer bagian atas diperkirakan menjadi penyebab meningkatnya penyakit kanker kulit dan katarak pada manusia, merusak tanaman pangan tertentu, memengaruhi plankton yang akan berakibat pada rantai makanan di laut, dan meningkatnya karbondioksida (lihat pemanasan global) akibat berkurangnya tanaman dan plankton. Sebaliknya, terlalu banyak ozon di bagian bawah atmosfer membantu terjadinya kabut campur asap, yang berkaitan dengan iritasi saluran pernapasan dan penyakit pernapasan akut bagi mereka yang menderita masalah kardiopulmoner. [1]

Lubang Ozon
Pada awal tahun 1980-an, para peneliti yang bekerja di Antartika mendeteksi hilangnya ozon secara periodik di atas benua tersebut. Keadaan yang dinamakan lubang ozon (suatu area ozon tipis pada lapisan ozon) ini, terbentuk saat musim semi di Antartika dan berlanjut selama beberapa bulan sebelum menebal kembali. Studi-studi yang dilakukan dengan balon pada ketinggian tinggi dan satelit-satelit cuaca menunjukkan bahwa persentase ozon secara keseluruhan di Antartika sebenarnya terus menurun. Penerbangan-penerbangan yang dilakukan untuk meneliti hal ini juga memberikan hasil yang sama.

Regulasi
Pada tahun 1987, ditandatangani Protokol Montreal, suatu perjanjian untuk perlindungan terhadap lapisan ozon. Protokol ini kemudian diratifikasi oleh 36 negara termasuk Amerika Serikat. Pelarangan total terhadap penggunaan CFC sejak 1990 diusulkan oleh Komunitas Eropa (sekarang Uni Eropa) pada tahun 1989, yang juga disetujui oleh Presiden AS George Bush. Pada Desember 1995, lebih dari 100 negara setuju untuk secara bertahap menghentikan produksi pestisida metil bromida di negara-negara maju. Bahan ini diperkirakan dapat menyebabkan pengurangan lapisan ozon hingga 15 persen pada tahun 2000. CFC tidak diproduksi lagi di negara maju pada akhir tahun 1995 dan dihentikan secara bertahap di negara berkembang hingga tahun 2010. Hidrofluorokarbon atau HCFC, yang lebih sedikit menyebabkan kerusakan lapisan ozon bila dibandingkan CFC, digunakan sementara sebagai pengganti CFC, hingga 2020 pada negara maju dan 2016 di negara berkembang. Untuk memonitor berkurangnya ozon secara global, pada tahun 1991, National Aeronautics and Space Administration (NASA) meluncurkan Satelit Peneliti Atmosfer. Satelit dengan berat 7 ton ini mengorbit pada ketinggian 600 km (372 mil) untuk mengukur variasi ozon pada berbagai ketinggian dan menyediakan gambaran jelas pertama tentang kimiawi atmosfer di atas.
SUMBER:http://id.wikipedia.org/wiki/Lapisan_ozon

Ozon adalah gas yang secara alami terdapat di dalam atmosfir. Masing-masing molekul ozon terdiri dari tiga buah atom oksigen dan dinyatakan sebagai O3. Ozon bisa dijumpai di dua wilayah atmosfir. Sekitar 10% ozon berada di lapisan troposfir, yaitu wilayah atmosfir yang paling dekat dengan permukaan bumi dari permukaan bumi hingga ketinggian 10-16 kilometer. Sekitar 90% persen ozon berada di lapisan stratosfir, yaitu wilayah atmosfir yang terletak mulai dari puncak troposfir hingga ketinggian sekitar 50 kilometer. Ozon yang berada di stratosfir sering kali disebut lapisan ozon.



Produksi ozon stratosfir seimbang dengan kerusakan ozon melalui reaksi kimia. Ozon secara terus menerus bereaksi dengan berbagai zat-zat kimia alami maupun buatan manusia di stratosfir. Dalam setiap reaksi, sebuah molekul ozon hilang dan senyawa kimia lainnya terbentuk. Berbagai gas reaktif yang penting yang dapat merusak ozon adalah gas-gas yang mengandung klorin dan bromin. Oleh karenanya ozon yang sediakala berfungsi untuk berikatan dengan ultraviolet, dan mereduksi ultraviolet yang jika bisa lolos ke permukaan bumi secara langsung dalam jumlah yang banyak akan menimbulkan dampak kesehatan bagi manusia. Beberapa diantaranya adalah kanker kulit, gangguan pada sistem pernapasan,dan iritasi mata. Selain itu peningkatan konsentrasi ozon di troposfir dapat menyebabkan pemanasan permukaan bumi.

Inilah alasan kenapa dengan pemakaian BPO (Bahan Perusak Ozon) yang seringkali dilarang atau dihimbau untuk dikurangi pemakaiannya. Dengan pemakaian bahan atau produk yang mengandung bahan tersebut, sebut saja Klorin yang sering kita gunakan pada produk spay (parfum, semprot nyamuk,kemasan,dll) turut menyumbang kerusakan atau dalam hal ini kemampuan ozon untuk menyerap sinar ultraviolet akan terganggu. So, menjaga lingkungan itu tidak susah asalkan sudah dimulai dari diri Anda sendiri, hal-hal kecil seperti kurangi konsumsi produk yang mengandung BPO, dan mulailah SEKARANG

PENIPISAN LAPISAN OZON, PEMANASAN GLOBAL, DAN KRISIS ENERGI
1.1 Penipisan Lapisan Ozon

Fenomena penipisan lapisan ozon stratosfer oleh bahan kimia chlorofluoromethane (atau biasa disebut sebagai chlorofluorocarbon – CFC) pertama kali disampaikan oleh dua orang ilmuwan Amerika, Rowland dan Molina, di Jurnal Nature pada tahun 1974. Sejak saat itu perdebatan dan wacana pengaturan penggunaan CFC terus menggelinding, tidak hanya di Amerika namun juga di berbagai negara. Berbagai kajian ilmiah tentang penipisan lapisan ozon akibat CFC kemudian dilakukan oleh para ilmuwan. Puncak dari berbagai kajian tersebut adalah temuan tim ekspedisi ilmuwan Inggris yang dipimpin oleh Joe Farman tentang sangat rendahnya konsentrasi ozon stratosfer di atas Benua Antartika pada akhir musim dingin dan awal musim semi. Temuan tersebut dipublikasikan di Jurnal Nature pada tahun 1985. Istilah lubang ozon (ozone hole) mulai digunakan untuk menggambarkan sangat rendahnya konsentrasi ozon di suatu daerah (kurang dari 220 Dobson Unit). Gambar 1 yang menunjukkan lubang ozon di atas Kutub Selatan pada tahun 2006 membuktikan bahwa kerusakan lubang ozon masih terus berlanjut sampai saat ini yang luasnya sempat mencapai 29 juta km2.

Menyikapi kondisi tersebut, komunitas internasional segara bertindak dan menyepakati Konvensi Wina pada tahun 1985. Langkah lebih lanjut adalah melalui penetapan Protokol Montreal pada tahun 1987yang mengatur lebih rinci tentang penghapusan Bahan Perusak Ozon (BPO). Saat ini, protokol tersebut sudah diratifikasi oleh 193 negara dan menjadi salah satu contoh keberhasilan perjanjian internasional dalam melindungi lingkungan di bumi.
Gambar 1. Lubang ozon di Antartika [NASA, 2006]
Penipisan lapisan ozon merupakan salah satu masalah penting yang harus segera ditanggulangi karena setiap penipisan lapisan ozon sebesar 10% akan menyebabkan kenaikan intensitas sinar Ultra Violet (UV) B sebesar 20%. Hasil penelitian para ahli menunjukkan bahwa tingginya intensitas UV-B bisa menimbulkan katarak mata, kanker kulit, penurunan kekebalan tubuh, memusnahkan plankton, dan menghambat pertumbuhan tanaman.
1.2 Pemanasan Global

Pemanasan global dan perubahan iklim merupakan permasalahan lingkungan yang saat ini mendapat perhatian dari berbagai kalangan, mulai dari para ahli, pengambil kebijakan, hingga masyarakat umum. Tingginya perhatian masyarakat dunia tersebut dikarenakan fenomena ini bisa dirasakan oleh siapa saja dan dampaknya akan mengenai semua penduduk bumi tanpa terkecuali. Gambar 2 menunjukkan terjadinya kenaikan temperatur permukaan bumi di seluruh benua.

Gambar 2. Kenaikan temperatur di berbagai benua [IPCC, 2007] [IPCC, 2007]
Pada tahun 2007, IPCC (Intergovernmental Panel on Climate Change) melaporkan bahwa konsentrasi CO2 di atmosfer telah mencapai 379 ppm, melebihi variasi alaminya antara 280 – 300 ppm yang telah bertahan selama kurun waktu 650.000 tahun terakhir. Kenaikan konsentrasi Gas Rumah Kaca (GRK) tersebut telah menyebabkan kenaikan temperatur permukaan bumi sebesar 0,76oC sejak masa sebelum revolusi industri. Sebelas diantara dua belas tahun terpanas sejak tahun 1850 terjadi pada kurun waktu antara 1995 – 2006.

Selain kenaikan temperatur yang bisa dirasakan oleh hampir seluruh penduduk di permukaan bumi, para ilmuwan juga mengamati dan terus mencatat pencairan lempeng es dan glatsier di berbagai wilayah. Wilayah Greenland tidak lagi seperti dahulu karena sudah ditinggalkan sebagian lapisan esnya. Demikian juga glatsier yang menyelimuti beberapa pegunungan sudah mencair dan menimbulkan kekhawatiran akan pasokan sumber air.

Mencairnya lapisan es dan glatsier tersebut menyebabkan kenaikan permukaan air laut yang mengancam keberadaan pulau-pulau kecil yang ada di permukaan bumi. Indonesia yang memiliki sekitar 17.500 pulau (mayoritas pulau-pulau kecil) dan 81.000 km garis pantai tentu saja akan terkena dampak kenaikan permukaan air laut secara signifikan.

Pemanasan global dan perubahan iklim juga menyebabkan terjadinya perubahan pola penguapan dan presipitasi air di permukaan bumi. Hal ini dikaitkan dengan fenomena kekeringan berat di musim kemarau dan hujan lebat yang acapkali menyebabkan banjir di musim penghujan. Perubahan pola musim ini juga dikaitkan dengan perubahan pola-pola penyakit terkait iklim, seperti Demam Berdarah Dengue (DBD) dan Malaria. Naiknya temperatur permukaan bumi juga diduga dapat mengancam produktivitas pertanian di wilayah ekuator.

1.3 Krisis Energi

Krisis energi yang terjadi di tahun 2008 dipicu oleh kenaikan harga minyak dunia hingga di atas USD 130 per barel. Kenaikan tersebut diikuti oleh kenaikan harga sumber-sumber energi yang lain, seperti gas dan batubara. Dampaknya
Gambar 4. Konsumsi energi dunia dalam Juta ton setara minyak [IEA, 2007]
kepada masyarakat segera bisa dirasakan karena saat ini sumber energi merupakan salah satu kebutuhan vital selain pangan. Meski di akhir tahun 2008, harga minyak dunia meluncur hingga di bawah USD 40 per barel, ancaman kelangkaan minyak bumi di masa depan berikut dampak kenaikan harganya tidak bisa diabaikan. Pertumbuhan konsumsi energi dunia bisa dilihat pada Gambar 4 berikut ini.

Dalam 33 tahun, konsumsi energi dunia sudah berlipat sekitar 2 kali lipat. Gambar 4 menunjukkan bahwa minyak bumi masih mendominasi suplai energi dunia. Di sisi lain, banyak ahli meramalkan akan datangnya suatu masa saat terjadinya penurunan produksi minyak dunia secara cepat. Tanpa kesiapan umat manusia menghadapi masa tersebut, krisis energi yang lebih dahsyat bisa menimpa penduduk bumi.

Meski mengekspor sumber energi fosil (gas, batu bara, dan minyak bumi) dalam jumlah besar, yakni sekitar 53% dari produksi, pengalaman menunjukkan bahwa Indonesia tidak terlepas dari krisis energi yang melanda dunia. Hal ini disebabkan karena negara kita tidak berswasembada di bidang minyak bumi; sumber energi yang masih mendominasi suplai energi nasional. Dengan kebutuhan nasional sekitar 1,2 Juta barel minyak per hari, negara kita hanya mampu memproduksi di bawah 1 Juta barel minyak per hari. Belum lagi kapasitas kilang minyak yang masih berada di bawah kebutuhan nasional, memaksa Indonesia harus mengimpor bahan bakar dari luar negeri. Hal ini menyebabkan Indonesia sangat terpengaruh manakala terjadi gejolak minyak dunia. Orientasi ekspor dari beberapa perusahaan pertambangan juga sedikit banyak mempengaruhi ketersediaan sumber energi fosil di tanah air. Prediksi kurva produksi minyak bumi di Indonesia bisa dilihat pada Gambar 5 berikut ini.

Turunnya produksi minyak Indonesia di bawah 1 Juta barel per hari menunjukkan bahwa upaya-upaya optimalisasi sumur yang sudah ada dan pengembangan sumur baru belum membuahkan hasil seperti yang diharapkan. Sementara itu, berlawanan dengan kecenderungan penurunan produksi bahan bakar minyak, kebutuhan energi nasional akan terus mengalami peningkatan (lihat Gambar 6).

Dua fenomena yang bertentangan tersebut, penurunan produksi minyak bumi dan kenaikan permintaan energi, membutuhkan perhatian serius dari Pemerintah dan seluruh masyarakat Indonesia.

1.4 Keterkaitan Antar Permasalahan

Penipisan lapisan ozon dan pemasan global/perubahan iklim merupakan dua masalah yang saling terkait; baik secara saintifik, teknologi, maupun dampaknya. Peningkatan temperatur permukaan bumi menyebabkan turunnya temperatur lapisan stratosfer; hal ini memperlambat pemulihan lapisan ozon. Ilmuwan NASA memperkirakan bahwa akibat pemanasan global, pemulihan lapisan ozon akan terlambat 18 tahun dari perkiraan semula, yakni tahun 2068 (semula 2050). Di sisi lain, penggunaan sumber energi secara boros, disamping menyebabkan krisis energi, juga bertanggung jawab terhadap semakin tingginya pemanasan global. Dengan demikian ketiga masalah di atas, penipisan lapisan ozon, pemanasan global, dan penggunaan sumber energi memiliki keterkaitan antara satu dengan yang lain.







Gambar 7. Es di kutub yang terancam oleh pemanasan global
Bahan-Bahan Perusak Ozon (BPO) seperti CFC, HCFC, Halon, dan Metil Bromida, juga memiliki kemampuan yang tinggi dalam menyebabkan pemanasan global. Refrigeran halokarbon menyerap radiasi gelombang infra merah pada rentang spektrum absorpsi yang berbeda dengan CO2. Kekuatan absorpsi refrigeran halokarbon bisa ribuan kali lebih kuat dibandingkan CO2. Dengan demikian, refrigeran halokarbon merupakan GRK yang cukup kuat.
Di sisi lain, pada saat refrigeran halokarbon tersebut merusak lapisan ozon, maka secara tidak langsung, refrigeran tersebut menimbulkan efek pendinginan karena ozon juga merupakan GRK. Namun, efek pemanasan langsung akibat refrigeran halokarbon jauh lebih tinggi dibandingkan efek pendinginan yang mungkin terjadi. Potensi suatu gas menyebabkan efek pemanasan permukaan bumi dinyatakan dalam besaran Global Warming Potential (GWP) dengan CO2 sebagai referensi (GWP = 1). Beberapa nilai ODP (Ozone Depleting Potential) dan GWP refrigeran dapat dilihat di Tabel 1.









Tabel 1 ODP dan GWP beberapa refrigeran



Selain dampak langsung refrigeran terhadap pemanasan global, pengoperasian mesin refrigerasi juga menimbulkan emisi CO2 akibat konsumsi energi (listrik ataupun bahan bakar) oleh mesin refrigerasi tersebut. Delapan puluh persen dampak sektor refrigerasi terhadap pemanasan global berasal dari konsumsi energinya; bukan dari kebocoran refrigeran. Sektor refrigerasi mengkonsumsi sekitar 15% energi dunia yang sebagian besar diproduksi dari sumber energi fosil (batubara, minyak bumi, dan gas alam).

Metode yang komprehensif dalam mengevaluasi emisi GRK yang diakibatkan mesin refrigerasi diantaranya adalah TEWI (Total Equivalent Warming Impact) yang memperhitungkan emisi GRK pada saat pengoperasian dan pembuangan mesin. Sedangkan metode LCCP (Life Cycle Climate Performance) adalah TEWI yang ditambah dengan emisi GRK tidak langsung pada saat proses manufaktur mesin refrigerasi serta proses produksi refrigeran.
Lapisan Ozon

2.1 Pengertian Tentang Ozon

Ozon adalah gas yang secara alami terdapat di dalam atmosfir. Masing-masing molekul ozon terdiri dari tiga buah atom oksigen dan dinyatakan sebagai O3. Ozon bisa dijumpai di dua wilayah atmosfir. Sekitar 10% ozon berada di lapisan troposfir, yaitu wilayah atmosfir yang paling dekat dengan permukaan bumi dari permukaan bumi hingga ketinggian 10-16 kilometer. Sekitar 90% persen ozon berada di lapisan stratosfir, yaitu wilayah atmosfir yang terletak mulai dari puncak troposfir hingga ketinggian sekitar 50 kilometer. Ozon yang berada di stratosfir sering kali disebut lapisan ozon.

Ozon ditemukan di laboratorium pada pertengahan tahun 1800an. Keberadaan ozon di atmosfir kemudian ditemukan menggunakan metoda pengukuran secara kimiawi dan optis. Kata ozon berasal dari bahasa Yunani: ozein yang berarti berbau. Ozon memiliki bau yang sangat kuat sehingga keberadaannya mudah diketahui walaupun dalam konsentrasi yang rendah.

Ozon akan dengan cepat dapat bereaksi dengan berbagai bahan-bahan kimia dan dalam konsentrasi yang sangat banyak bersifat mudah meledak ( explosive ) . Pelepasan muatan listrik (electrical discharges) pada umumnya digunakan untuk membuat ozon dalam proses industri seperti proses pemurnian udara dan air, pemutihan tekstil dan produk-produk makanan.

Sebagian besar ozon (sekitar 90%) dijumpai di stratosfir, sebuah lapisan yang terletak pada ketinggian sekitar 10-16 kilometers di atas permukaan bumi hingga ketinggian sekitar 50 kilometers. Di daerah tropis lapisan stratosfir dimulai dari ketinggian yang lebih tinggi yaitu 16 kilomete r, dibandingkan dengan di daerah kutub yaitu 10 kilometer. Tempat berkumpulnya ozon di stratosfir biasanya dikenal dengan istilah “lapisan ozon.” Sekitar 10% ozon dijumpai di lapisan troposfir, yaitu wilayah atmosfir yang paling dekat dengan permukaan bumi , yaitu terletak diantara permukaan bumi dengan lapisan stratosfir.

Konsentrasi molekul-molekul ozon di atmosfir jauh lebih sedikit dibandingkan dengan gas-gas lainnya seperti oksigen (O2) nitrogen (N2) . Di lapisan stratosfir disekitar puncak lapisan ozon, terdapat sekitar 12 molekul ozon untuk setiap satu juta molekul udara. Di lapisan troposfir dekat permukaan Bumi, konsentrasi ozon lebih sedikit, berkisar antara 0,0 2 hingga 0, 1 molekul ozon untuk setiap satu juta molekul udara. Konsentrasi tertinggi ozon permukaan berasal dari udara yang tercemar oleh aktivitas manusia.

Sebagai ilustrasi sedikitnya konsentrasi ozon di dalam atmosfir kita, andaikan seluruh molekul-molekul ozon baik yang berada di troposfir maupun di stratosfir dibawa ke permukaan Bumi dan secara merata disebar ke seluruh permukaan Bumi, maka ketebalan ozon hanya sekitar beberapa milimeter saja.


Gambar 2.1 Konsentrasi Ozon

Pembentukan ozon di atmosfir

Ozon terbentuk di atmosfir melalui beberapa langkah proses kimia yang memerlukan bantuan sinar matahari. Di lapisan stratosfir, proses pembentukan ozon dimulai dengan pecahnya molekul oksigen (O2) oleh radiasi ultraviolet dari Matahari. Pada atmosfir bawah (troposfir), ozon terbentuk melalui serangkaian reaksi kimia yang berbeda yang melibatkan gas-gas yang mengandung hidrokarbon dan nitrogen.

Ozon stratosfir secara alami terbentuk melalui reaksi kimia yang melibatkan radiasi ultraviolet m atahari dan molekul oksigen yang tersedia di atmosfir (21% dari kandungan atmosfir). Langkah pertama, sinar matahari memecah molekul oksigen (O2) menghasilkan dua atom oksigen (2 O) seperti pada G ambar 2.2 . Pada langkah kedua, masing-masing atom oksigen tersebut bereaksi dengan sebuah molekul oksigen menghasilkan molekul ozon (O3). Reaksi tersebut terjadi terus menerus karena keberadaan radiasi ultraviolet matahari di stratosfir. Akibatnya, produksi ozon terbesar te r jadi di stratosfir tropis.




Gambar 2.2. Proses Pembentukan ozon di Stratosfir

Produksi ozon stratosfir seimbang dengan kerusakan ozon melalui reaksi kimia. Ozon secara terus menerus bereaksi dengan berbagai zat-zat kimia alami maupun buatan manusia di stratosfir. Dalam setiap reaksi, sebuah molekul ozon hilang dan senyawa kimia lainnya terbentuk. Berbagai gas reaktif yang penting yang dapat merusak ozon adalah gas-gas yang mengandung klorin dan bromin.

Dekat permukaan bumi , ozon juga diproduksi melalui reaksi kimia yang melibatkan gas-gas alami maupun gas-gas pencemar lainnya. Produksi ozon troposfir utamanya melibatkan gas-gas hidrokarbon dan nitrogen oksida serta sinar matahari. Pemakaian bahan bakar fosil merupakan sumber utama produksi ozon troposfir yang berasal dari gas-gas pencemar. Produksi ozon permukaan tidak memberikan kontribusi yang signifikan terhadap kelimpahan ozon stratosfir. Jumlah ozon permukaan terlalu sedikit dan memindahkan ozon permukaan ke stratosfir tidak cukup efektif. Sebagaimana ozon stratosfir, ozon di troposfir dapat rusak akibat adanya rekasi kimia secara alami maupun yang melibatkan zat-zat kimia buatan manusia.

Kelimpahan ozon di stratosfir dan troposfir ditentukan oleh keseimbangan antara proses-proses kimia yang membentuk dan yang merusak ozon. Keseimbangan yang dimaksud disamping ditentukan oleh jumlah gas-gas yang bereaksi juga oleh laju dan efektivitas reaksi yang bervariasi ditentukan oleh intensitas sinar matahari, lokasi, suhu udara, dan faktor-faktor lain. Bila kondisi atmosfir berubah mengarah pada terjadinya reaksi pembentukan ozon maka kelimpahan ozon di suatu tempat akan meningkat. Sebaliknya bila kondisi atmosfir mengarah pada terjadinya reaksi perusakan ozon maka kelimpahan ozon akan menurun. Keseimbangan antara reaksi pembentukan dan perusakan ozon dikombinasikan dengan pergerakan masa udara di atmosfir menentukan distribusi ozon secara global dalam skala waktu harian hingga bulanan. Sejak dekade yang lalu kelimpahan ozon global telah menurun akibat meningkatkan konsentrasi gas-gas reaktif yang mengdanung klorin dan bromin di lapisan stratosfir.

Pengukuran ozon di atmosfir

Jumlah ozon di atmosfir diukur dengan menggunakan berbagai instrument baik yang dipasang di darat, dipasang pada balon sonde, pesawat udara dan satelit. Mengukur ozon bisa dilakukan dengan memasukkan udara kedalam suatu alat yang berisi sistem deteksi ozon. Cara lainnya dilakukan berdasarkan sifat unik ozon dalam hal menyerap radiasi matahari di atmosfir. Dalam hal ini, sinar matahari atau laser secara cermat diukur porsinya di atmosfir yang mengandung ozon.

Kelimpahan ozon di atmosfir diukur menggunakan berbagai teknik seperti pada Gambar 2.3. Teknik-teknik pengukuran dilakukan dengan menggunakan sifat-sifat optis dan kimia ozon. Ada dua kat e gori utama teknik pengukuran , yaitu pengukuran secara langsung dan dari jarak jauh (remote). Pengukuran ozon dengan teknik seperti ini telah sering digunakan untuk memantau perubahan yang terjadi pada lapisan ozon dan melalui pemahaman kita terhadap berbagai proses yang mengendalikan kelimpahan ozon.

Ozon di atmosfir diukur dengan berbagai instrumen baik yang ditempat di daratan, di pesawat udara, balon udara dan satelite. Berbagai instrumens dapat mengukur ozon secara langsung dengan jalan mengukur kandungan ozon sampel udara, sedangkan yang lainnya mengukur dari jarak jauh. Beberapa jenis instrument menggunakan teknik optic dengan sinar Matahari dan laser sebagai sumber cahaya, atau menggunakan reaksi kimia yang unik terhadap ozon. Pengukuran ozon total dilakukan di berbagai tempat dengan skala waktu mingguan.


Gambar 2.3. Pengukuran Ozon di Atmosfir

Pengukuran langsung kelimpahan ozon di atmosfir dilakukan dengan menarik udara langsung ke dalam sebuah instrumen. Begitu udara sudah berada di dalam instrumen, ozon dapat diukur melalui penyerapannya terhadap sinar ultraviolet (UV) atau melalui arus listrik yang dihasilkan dalam reaksi kimia dari ozon. Cara seperti itu digunakan dalam pembuatan “ozonsonde,” yang merupakan modul pengukur ozon yang bisa ditempatkan dalam sebuah balon udara yang kecil. Balon-balon udara kecil dapat terbang cukup tinggi sehingga bisa mengukur ozon di lapisan stratosfir. Ozonsonde bisanya diluncurkan setiap minggu di berbagai tempat di dunia. Instrumen pengukur ozon secara langsung dengan menggunakan sifat optis dan kimia sering dipasang pada pesawat terbang untuk mengukur distribusi ozon di troposfir dan stratosfir bawah. Pesawat terbang tertentu (high altitute aircraft) dapat terbang cukup tinggi sehingga dapat mencapai lapisan ozon di stratosfir dan dapat mencapai tempat terjauh di sekitar kutub. Pengukuran ozon juga dilakukan dengan menggunakan pesawat komersial.

Pengukuran kelimpahan ozon jarak jauh dilakukan dengan mendeteksi keberadaan ozon dari jarak yang sangat jauh dengan instrument pengukurnya. Sebagian besar pengukuran ozon jarak jauh didasarkan pada sifat unik ozon yang dapat menyerap radiasi UV. Sumber-sumber radiasi UV bisa berasal dari Matahari dan laser. Sebagai contoh, satelit menggunakan penyerapan UV matahari oleh atmosfir atau penyerapan sinar matahari yang dibaurkan oleh permukaan Bumi untuk mengukur ozon di seluruh dunia setiap harinya. Suatu jaringan detektor yang ditempatkan di darat mengukur ozon melalui jumlah sinar UV yang mencapai permukaan Bumi. Instrumen lain yang digunakan mengukur ozon dilakukan dengan mengukur absorpsi radiasi infra-merah atau sinar tampak atau emisi gelombang mikro atau radiasi inframerah. Jumlah ozon total dan distribusinya menurut lintang dapat diukur dengan teknik jarak jauh. Sinar laser yang dipancarkan dari stasiun di daratan maupun dari pesawat udara sering kali digunakan untuk mengukur ozon dari jarak beberapa kilometer sepanjang berkas sinar laser tersebut.

Penyebaran Ozon di atas Permukaan Bumi

Jumlah ozon total di atas permukaan bumi bervariasi sesuai dengan lokasi dan sekala waktu yang berkisar dari harian hingga musiman. Keragaman tersebut disebabkan oleh pergerakan udara di stratosfir dan produksi bahan-bahan kimia serta kerusakan ozon. Total ozon pada umu m nya paling rendah di equator dan paling tinggi di kutub yang disebabkan oleh pola angin musiman di atmosfir.

Ozon total di atas permukaan bumi diperoleh dengan mengukur kandungan seluruh ozon yang persis berada d i atas tempat tersebut. Ozon total terdiri dari ozon stratosfir dan ozon troposfir. Ozon total dinyatakan dengan Dobson Units ( DU ). Biasanya nilai ozon total di atas permukaan bumi bervariasi dari 200 hingga 500 DU . Nilai ozon total sebesar 500 DU, setara dengan ketebalan 0.5 cm atau 0.2 inci saja.

Konsentrasi ozon total sangat ditentukan oleh posisi lintang, dimana konsentrasi tertinggi terjadi di lintang tengah dan lintang tinggi. Hal ini terjadi akibat adanya sirkulasi udara di atmosfir yang memindahkan udara tropis yang kaya ozon menuju ke kutub pada musim gugur dan musim dingin. Kawasan dengan kandungan ozon total yang rendah terjadi di kutub pada musim dingin dan semi sebagai akibat terjadi perusakan ozon secara kimiawi oleh gas-gas klorin dan bromin. Konsentrasi ozon total terendah ( selain di Antartika pada musim semi ) terjadi juga di daerah tropis pada semua musim karena secara alami konsentrasi ozon terendah memang terjadi di wilayah tropis.

Semakin tinggi lintang suatu tempat maka semakin tinggi konsentrasi ozon totalnya. Konsentrasi terendah terjadi di kawasan tropis (lintang rendah). Gambar di bawah mengilustrasikan sebaran ozon total di seluruh dunia.


Gambar 2.4. Gambaran Konsentrasi Ozon Total di seluruh Dunia pada tanggal 7 Januari 2007

Variasi ozon total alami terhadap lintang dan bujur bumi terjadi karena dua alasan. Pertama, pergerakan udara alami menyebabkan pencampuran udara yang mengandung ozon tinggi maupun rendah. Pergerakan udara juga meningkatkan ketebalan verti k al lapisan ozon di dekat kutub, yang menyebabka n ozon total di kawasan tersebut menjadi meningkat. Sistem cuaca yang terjadi di troposfir untuk sementara waktu dapat mengurangi ketebalan ozon stratosfir di suatu tempat, sehingga pada saat yang bersamaan konsentrasi ozon total di tempat tersebut juga menurun. Kedua, keragaman terjadi sebagai akibat perubahan keseimbangan antara produksi bahan-bahan kimia perusak ozon dengan dengan proses kerusakan ozon secara alami sebagaimana udara berpindah ke tempat baru di atas bumi . Berkurangnya paparan terhadap radiasi ultraviolet matahari, akan menurunkan produksi ozon.

2.2 Pe ngertian Tentang Lapisan ozon

Elemen-elemen yang membentuk atmosfir Bumi sangat penting artinya bagi kita semua. Keseimbangan gas-gas di atmosfir telah berubah akhir-akhir ini akibat dari aktivitas manusia. Guna melindungi dan melestarikan kehidupan di muka Bumi, para ilmuwan perlu memahami berbagai faktor yang rumit yang mengendalikan keseimbangan gas-gas di atmosfir.

Atmosfir terdiri dari 78% nitrogen, 21% oksigen dan gas-gas minor, 1% argon gas-gas telusur, karbon dioksida dan ozon. Begitu sedikitnya jumlah ozon didalam atmosfir, maka jika kita bawa semua molekul-molekul ozon ke permukaan maka tebalnya hanya sekitar 3 mm. Ozon terdapat di seluruh atmosfir, tetapi sebagian besar terdapat di lapisan stratosfir, antara 15 dan 40 km di atas permukaan Bumi. Ozon inilah yang dikenal dengan istilah “Lapisan Ozon”.

Lapisan ozon melindungi bumi dari pengaruh berbahaya radiasi matahari. Radiasi ultraviolet (UV) yang berasal dari matahari berbahaya bagi kehidupan di b umi. Semakin menigkatnya jumlah radiasi UV (UV-B) dapat merusa k rantai makanan yang ada di laut. Disamping itu terdapat hubungan yang kuat antara meningkatnya UV dengan meningkatnya kasus-kasus penyakit kanker kulit dan katarak mata pada manusia. Pada dasarnya atmosfir bertindak sebagai perisai terhadap radiasi matahari melalui penyebaran atau penyerapan oleh molekul-molekul gas yang ada di dalam atmosfir b umi. Terhadap hal ini, ozonlah yang paling efektif menyerap radiasi UV. Secara alami molekul-molekul ozon terbentuk dan rusak di atmosfir Bumi. Secara alami pula penipisan lapisan ozon terjadi di atas Kutub Selatan (Antarctica) setiap musim semi (springtime).

Akan tetapi belakangan diketahui bahwa telah terjadi penipisan lapisan ozon yang tidak alami. Sejak dekade yang lalu ozon di atas Antarti k a telah semakin menipis pada musim semi secara tidak alami. Para peneliti menemukan bahwa penipisan tersebut sebagai akibat langsung dari pelepasan chlorofluorocarbon (CFC) oleh manusia ke atmosfir. Selama ini CFC secara luas digunakan sebagai zat pendorong (propellant) pada produk-produk aerosol (spray) dan sebagai media pendingin (coolant) pada alat-alat pendingin (refrigerator). Begitu terlepas ke udara maka zat kimia yang stabil ini tidak bisa terurai ketika berada di lapisan atmosfir bawah dan butuh satu dekade untuk bermigrasi ke lapisan stratosfir. Begitu mencapai stratosfir, maka molekul-molekul CFC yang biasanya stabil karena terpapar langsung terhadap radiasi UV akan terurai menjadi atom-atom yang reaktif. Atom-atom reaktif tersebut selanjutnya bereaksi dengan ozon menghasilkan senyawa baru. Sayangnya senyawa baru tersebut tidak stabil dan terus-menerus bereaksi merusak ozon. Satu atom klorin dapat merusak ribuan molekul ozon sebelum akhirnya terikat menjadi senyawa yang stabil. Ketika itu kerusakan ozon berhenti.


Gambar 2.5. Letak Lapisan Ozon pada Atmosfir

2.3 Fungsi Lapisan Ozon Bagi Kehidupan di Bumi

Ozon di stratosfir menyerap sebagian besar radiasi ultraviolet matahari yang sangat berbahaya. Oleh karena peran inilah maka ozon stratosfir sering kali di sebut sebagai good ozone . Sebaliknya, ozon troposfir yang terbentuk akibat pencemaran disebut bad ozon e karena dapat membahayakan kehidupan manusia, tanaman dan hewan.

Semua molekul ozon secara kimiawi sama, yaitu terdiri dari tiga atom oksigen. Akan tetapi ozon di stratosfir memiliki fungsi lingkungan yang sangat berbeda dengan ozon troposfir . Ozon stratosfir baik bagi kehidupan manusia dan makhluk hidup lainnya karena dapat menyerap radiasi ultraviolet (UV-B) yang berasal dari matahari ( G ambar 2.6). Apabila tidak diserap oleh molekul ozon stratosfir, maka UV-B akan sampai ke permukaan b umi dalam jumlah yang membahayakan kehidupan. Bagi manusia, bila tingkat paparan terhadap UV-B meningkat, maka resiko terkena penyakit kanker kulit, katarak mata, dan menurunnya kekebalan tubuh akan meningkat pula. Paparan terhadap UV-B yang terjadi pada masa kanak-kanak dan jumlah kumulatif paparan adalah faktor penting yang menentukan resiko. Pemaparan yang berlebihan terhadap radiasi UV-B juga dapat merusak kehidupan tumbuhan di darat, organisme bersel tunggal, dan ekosistem perairan. Radiasi UV yang lain, yaitu UV-A, yang tidak terserap oleh ozon, dapat menyebabkan penuaan kulit secara prematur. Penyerapan radiasi UV-B oleh ozon merupakan sumber panas di stratosfir. Hal ini membantu memelihara kondisi di stratosfir sebagai kawasan yang stabil dimana suhu udara meningkat dengan ketinggian. Oleh karena itu ozon memainkan peran kunci dalam mengendalikan struktur suhu di atmosfir b umi.

Ozon juga terbentuk di dekat permukaan b umi melalui proses reaksi kimia alami sebagai akibat keberadaan gas-gas pencemar buatan manusia. Ozon yang dihasilkan dari gas-gas pencemar berbahaya bagi kehidupan. Paparan ozon berlebih terhadap tumbuhan dapat menurunkan hasil. Paparan ozon berlebih p ada manusia dapat mengurangi kapasitas paru-paru dan dapat menyebabkan dada sakit, iritasi tenggorokan, batuk dan memperburuk kondisi kesehatan yang berhubungan dengan jantung dan paru-paru. Selain itu p eningkat a n konsentrasi ozon di troposfir dapat menyebabkan pemanasan permukaan b umi. Sumber utama pencemaran udara adalah pembakaran bahan bakar fosil dan aktifitas industri. Mengurangi emisi pencemar udara berarti dapat mengurangi konsentrasi ozon troposfir .

Gambar di bawah ini mengilustrasikan perlindungan masuknya radiasi UV-B oleh lapisan ozon yang berada di stratosfir dan membungkus seluruh permukaan b umi. Radiasi UV-B yang berasal dari m atahari (dengan panjang gelombang 280- 315 nanometer) sebagian besar diserap oleh lapisan ozon. Akibatnya jumlah radiasi UV-B yang mencapai permukaan b umi menjadi sangat berkurang. Sedangkan radiasi UV-A (315- 400- nm) tidak diserap oleh lapisan ozon.


Gambar 2.6. Fungsi Lapisan Ozon

2.4 Fenomena Penipisan Lapisan Ozon

Para ilmuwan mempelajari perusakan ozon melalui berbagai penelitian di laboratorium, model-model komputer, dan observasi langsung di stratosfir. Melalui penelitian di laboratorium, para ilmuwan mampu menemukan dan mengevaluasi terjadinya reaksi-reaksi kimia yang juga terjadi di stratosfir. Reaksi kimia antara dua gas mengikuti hukum-hukum fisika. Beberapa dari rekasi-reaksi kimia tersebut terjadi di permukaan partikel-partikel yang terbentuk di stratosfir. Berbagai reaksi yang melibatkan berbagai macam molekul seperti klorin, bromin, florin, dan iodin dan gas-gas lain yang ada di atmosfir seperti oksigen, nitrogen, dan hidrogen telah banyak diteliti orang. Penelitian tersebut menjelaskan bahwa terdapat beberapa reaksi yang melibatkan klorin dan bromin yang secara langsung atau tidak langsung menyebabkan kerusakan ozon di atmosfir.

Dengan menggunakan model-model komputer, para ilmuwan dapat meneliti keseluruhan pengaruh dari berbagai reaksi dalam kondisi kimiawi dan fisik seperti yang terjadi di stratosfir. Model-model tersebut termasuk angin, suhu udara, dan perubahan sinar matahari harian dan musiman. Melalui analisis seperti itu, para peneliti telah menunjukkan bahwa klorin dan bromin dapat bereaksi dalam siklus katalitik dimana satu atom klorin atau bromin dapat merusak banyak sekali molekul ozon. Para ilmuwan menggunakan hasil dari model tersebut untuk dibandingkan dengan hasil observasi waktu sebelumnya untuk menguji pemahaman kita terhadap atmosfir dan untuk mengevaluasi pentingnya berbagai reaksi baru yang ditemukan di laboratorium. Model-model komputer juga memungkinkan para peneliti untuk memprediksi keadaan yang akan datang dengan mengganti kondisi atmosfir dan parameter-parameter lainnya.

Proses perusakan ozon dimulai dengan pelepasan gas halogen yang mengandung klorin atau bromin di permukaan bumi. Salah satu contoh gas halogen yang mangandung klotion adalah chlorofluorocarbon (CFC) . Gas halogen terakumulasi di lapisan atmosfir bawah (troposfir) dan selanjutnya bergerak ke lapisan stratosfir. Akumulasi terjadi karena sebagian besar gas tersebut ketika berada di atmosfir bawah (troposfir) tidak mudah bere a ksi (stabil). Sebagian emisi gas halogen bisa juga berasal dari sumber-sumber alami. Gas-gas tersebut juga terakumulasi di troposfir dan bergerak ke lapisan stratosfir.

Gas halogen tidak bereaksi langsung dengan ozon. Pada saat berada di stratosfir, gas halogen tersebut secara kimia di ubah oleh radiasi ultaviolet dari matahari menjadi gas-gas halogen yang reaktif. Gas-gas reaktif tersebut merusak ozon yang ada di stratosfir. Rata-rata kerusakan ozon total yang disebabkan oleh gas-gas reaktif tersebut diperkirakan kecil di daerah tropis dan meningkat hingga 10% di lintang menengah (daerah sub tropis) . Di kawasan kutub, kehadiran awan-awan stratosfir kutub meningkatkan kelimpahan gas halogen yang paling reaktif. Hal ini menyebabkan kerusakan ozon terjadi lebih parah di kawasan kutub terutama pada musim dingin dan semi. Dalam kurun waktu yang relatif panjang , udara di stratosfir bergerak kembali ke troposfir, membawa gas halogen yang reaktif. Gas-gas tersebut kemudian hilang dari atmosfir oleh hujan dan salju dan terkubur di b umi. Proses ini mengakhiri kerusakan ozon oleh atom-atom klorin dan bromin yang awalnya dilepas ke atmosfir dalam bentuk molekul-molkul gas halogen.


Emisi

BPO diemisikan di permukaan bumi akibat berbagai aktivitas manusia dan proses alamiah

Transport

BPO ditransportasikan ke stratosfir akibat pergerakan udara

Reaksi Kimia

Gas-gas halogen yang reaktif bereaksi dengan molekul ozon dan menyebabkan penipisan lapisan ozon

Awan kutub stratosfir meningkatkan jumlah gas-gas halogen reaktif yang akibatnya memperparah penipisan lapisan ozon di kutub selama musim dingin dan semi

Konversi

Sebagian besar BPO dikonversikan melalui reaksi kimia yang melibatkan sinar matahari menjadi gas halogen yang reaktif

Akumulasi

BPO terakumulasi di atmosfir bagian bawah dan terdistribusi akibat pergerakan udara


Pembersihan

Udara yang mengandung gas halogen reaktif turun ke lapisan troposfir. Gas-gas tersebut akan bereaksi dengan uap air yang terdapat di awan dan hujan untuk selanjutnya dibawa ke permukaan bumi


Bagan dalam Gambar 2.7 menunjukkan prinsip dasar proses penipisan ozon di stratosfir.

Gas halogen yang umurnya pendek mengalami konversi kimiawi secara signifikan di troposfir menghasilkan gas halogen reakti f dan senyawa lainnya. Molekul-molekul gas yang tidak dikonversi terakumulasi di troposfir dan kemudian bergerak naik ke stratosfir. Hanya sebagian kecil gas halogen reaktif yang diproduksi di troposfir yang bergerak naik ke stratosfir karena sebagian besar larut dalam air hujan. Contoh penting gas-gas yang bisa hilang di troposfir adalah HCFC, yang digunakan bahan pengganti BPO, bromoform, dan gas-gas yang mengandung iodine.

Gambar di bawah ini menunjukkan foto satelit lubang ozon di atas Antartika pada tanggal 6 September (gambar kiri) dan 8 Oktober 2006 (gambar kanan).


Gambar 2.8. Foto satelit lubang ozon di tas Antartika

2.5 Bahaya Yang Bisa Timbul Akibat Kerusakan Lapisan Ozon

Berkurangnya konsentrasi ozon akan menyebabkan semakin tingginya tingkat radiasi UV-B yang dapat mencapai permukaan Bumi. Pancaran radiasi UV-B yang merupakan bagian dari sinar matahari sebenarnya tidak berubah, namun semakin berkurangnya ozon maka berkurang pula perlindungan sehingga lebih banyak lagi radiasi UV-B yang bisa mencapai permukaan Bumi. Hasil studi menunjukkan bahwa tingkat radiasi UV-B yang diukur di permukaan Bumi di daerah Antartika (Kutub Selatan) meningkat dua kali lipat bersamaan dengan kehadiran lubang ozon di atas Antartika. Studi lain mengkonfirmasikan terdapat hubungan yang nyata antara berkurangnya ozon dengan meningkatnya radiasi UV-B di Kanada selama beberapa tahun yang lalu.

Dampaknya Terhadap Kesehatan Manusia

Hasil studi laboratorium dan epidemiologis menunjukkan bahwa UV-B menyebabkan kanker kulit nonmelanoma dan memainkan peran utama dalam perkembangan malignant melanoma. Disamping itu, UV-B juga dapat menyebabkan katarak. Seluruh sinar matahari sebenarnya mengnadung UV-B, sekalipun dalam kondisi ozon yang natural. Dengan demikian penting bagi kita untuk selalu membatasi paparan langsung terhadap sinar matahari. Namun demikian, penipisan lapisan ozon akan meningkatkan jumlah radiasi UV-B dan akan meningkatkan resiko terhadap kesehatan manusia.

Dampaknya Terhadap Tanaman

Proses fisiologis dan perkembangan tanaman dipengaruhi oleh radiasi UV-B. Terlepas dari mekanisme untuk mengurangi atau memperbaiki dampak tersebut dan terbatasnya kemampuan untuk beradaptasi terhadap meningkatnya tingkat UV-B, pertumbuhan tanaman dapat secara langsung dipengaruhi oleh radiasi UV-B.

Perubahan tidak langsung yang disebabkan oleh UV-B seperti perubahan bentuk tanaman, perubahan distribusi nutrisi di dalam tanaman, perubahan waktu fase pertumbuhan dan metabolisme sekunder, barangkali bisa sama pentingnya atau bahkan lebih penting dari kerusakan tanaman akibat radiasi UV-B. Perubahan tersebut dapat berimplikasi penting terhadap keseimbangan kompetitif dari tanaman , penyakit tanaman, dan siklus biogeokimia.

Dampaknya Terhadap Ekosistem Laut

Phytoplankton membentuk fondasi rantai makanan di perairan. Produktivitas phytoplankton terbatas pada zona euphotic, yaitu lapisan atas dari kolom air dimana cukup tersedia sinar matahari untuk mendukung produktivitas neto. Posisi dari or ganisme di zona euphotic dipengaruhi oleh prilaku angin dan gelombang. Disamping itu terdapat juga phytoplankton yang mampu secara aktif bergerak sehingga dapat meningkatkan produktivitasnya, sehingga mereka mampu bertahan. Paparan langsung terhadap radiasi UV-B matahari berpengaruh baik terhadap mekanisme orientasi dan motilitas di dalam phytoplankton, menyebabkan menurunnya tingkat hidup dari organisme ini. Para peneliti telah mendemonstrasikan adanya suatu hubungan langsung di dalam produksi phytoplankton akibat penipisan lapisan ozon yang mengarah pada peningkatan radiasi UV-B. Sebuah studi telah menunjukkan terjadinya penurunan sebesar 6 - 12% di daerah yang miskin ozon.

Radiasi UV-B juga telah diketahui dapat menyebabkan kerusakan pada tahap pertumbuhan awal ikan, udang, kepiting, jenis ampibi dan binatang lainnya. Dampak yang paling buruk adalah menurunnya kapasitas reproduksi dan pertumbuhan larva. Dalam keadaan normalpun radiasi UVB matahari merupakan faktor pembatas, dan peningkatan sedikit saja paparan langsung terhadap radiasi UVB dapat memiliki dampak yang signifikan terhadap polpulasi binatang perairan.

Dampaknya Terhadap Siklus Biogeokimia
Meningkatnya radiasi UV matahari dapat mempengaruhi siklus biogeokimia di daratan dan di perairan, dengan demikian akan merubah baik sumber (sources) dan rosot (sinks) dari gas rumah kaca dan gas telusur penting lainnya seperti karbon dioksida (CO2), karbon monoksida (CO), carbonyl sulfide (COS) dan gas-gas lainnya termasuk ozon. Kemungkinan terjadi perubahan seperti ini akan berkontribusi terhadap biosphere-atmosphere feedbacks yang memperlemah atau memperkuat pembentukan gas-gas tersebut atmosfir.

Dampaknya Terhadap Berbagai Jenis Bahan
Polimer sintetis, dan polimer alami (biopolymer), serta berbagai bahan komersial lainnya sangat dipengaruhi oleh radiasi UV matahari. Berbagai jenis bahan yang ada saat ini dapat terlindung dari radiasi UVB karena menggunakan beberapa bahan aditiv khusus. Dengan demikian adanya penigkatan tingkat radiasi UV-B matahari akan mempercepat terjadinya kerusakan bahan, memperpendek waktu pakainya di luar ruangan (outdoor).
SUMBER: http://www.ozon-indonesia.org/index.php?table=lbozon&view=true&no=1

29 April 2011

Seasons - BUMI




Rotasi dan Revolusi

Rotasi adalah perputaran benda pada suatu sumbu yang tetap, misalnya perputaran gasing dan perputaran bumi pada poros/sumbunya. Untuk bumi, rotasi ini terjadi pada garis/poros/sumbu utara-selatan (garis tegak dan sedikit miring ke kanan). Jadi garis utara-selatan bumi tidak berimpit dengan sumbu rotasi bumi, seperti yang terlihat pada "globe bola dunia" yang digunakan dalam pelajaran ilmu bumi/geografi.
Kecepatan putaran ini diukur oleh banyaknya putaran per satuan waktu. Misalnya bumi kita berputar 1 putaran per 24 jam. Untuk rotasi mesin yang berputar lebih cepat dari rotasi bumi, kita pakai satuan rotasi per menit (rpm).
Akibat dari gerak rotasi ini, maka benda tersebut akan mengalami gaya sentrifugal, yaitu jenis gaya dalam ilmu fisika yang mengakibatkan benda akan terlempar keluar. Hal ini akan nampak terasa pada saat kita naik mobil yang melewati tikungan melingkar. Pada saat mobil ini bergerak melingkar dengan kecepatan agak tinggi, maka penumpang dalam mobil akan merasa terlempar ke samping (ke sisi luar lingkaran itu) sebagai akibat dari adanya gaya sentrifugal.

rotasi bumi pada porosnya

Bulan adalah satelit alami yang mengelilingi planet bumi yang dapat dilihat secara langsung dengan mata telanjang tanpa bantuan alat apapun. Bulan adalah benda angkasa yang bergerak secara relatif. Secara umum bulan bergerak relatip dalam tiga macam, yaitu rotasi, revolusi dan revolusi dengan bumi pada matahari.
1. Rotasi / Hari
Rotasi adalah perputaran satelit bulan pada porosnya seperti bumi berputar pada porosnya setiap hari. Saat ini bulan berotasi setiap 27,3 hari sekali. Dengan demikian satu hari di bulan sama dengan 27,3 hari di bumi atau 27,3 kali lebih lama daripada di pelanet kita.
2. Revolusi Terhadap Planet Bumi
Bulan sebagai satelit alami bumi juga berputar mengelilingi bumi dalam jangka waktu 27,3 hari. Karena waktu rotasi dan revolusi bulan adalah sama, maka permukaan bulan yang terlihat dari bumi tidak berubah dari waktu ke waktu.
3. Revolusi Terhadap Matahari Bersama Bumi
Bulan bersama-sama dengan planet bumi juga mengelilingi matahari. Seperti yang kita ketahui bahwa waktu yang dibutuhkan oleh bumi untuk beredar mengelilingi matahari adalah 365.25 hari. Begitupun revolusi bulan terhadap matahari bersama bumi juga 365,25 hari. Setiap empat tahun sekali kelebihan hari dibulatkan menjadi 366 hari atau disebut juga sebagai tahun kabisat.
Gerhana

Gerhana merupakan kejadian yang berlaku apabila satu benda langit bergerak ke dalam bayang benda langit yang lain.
Terdapat dua jenis gerhana:
gerhana matahari
* gerhana bulan


Gerhana Matahari


Gerhana matahari terjadi ketika posisi Bulan terletak di antara Bumi dan Matahari sehingga menutup sebagian atau seluruh cahaya Matahari. Walaupun Bulan lebih kecil, bayangan Bulan mampu melindungi cahaya matahari sepenuhnya karena Bulan yang berjarak rata-rata jarak 384.400 kilometer dari Bumi lebih dekat dibandingkan Matahari yang mempunyai jarak rata-rata 149.680.000 kilometer.

Gerhana matahari pada tanggal 29 Maret 2006.
Gerhana matahari dapat dibagi kepada tiga jenis yaitu: gerhana total, gerhana sebagian, dan gerhana cincin. Sebuah gerhana matahari dikatakan sebagai gerhana total apabila saat puncak gerhana, piringan Matahari ditutup sepenuhnya oleh piringan Bulan. Saat itu, piringan Bulan sama besar atau lebih besar dari piringan Matahari. Ukuran piringan Matahari dan piringan Bulan sendiri berubah-ubah tergantung pada masing-masing jarak Bumi-Bulan dan Bumi-Matahari.
Gerhana sebagian terjadi apabila piringan Bulan (saat puncak gerhana) hanya menutup sebagian dari piringan Matahari. Pada gerhana ini, selalu ada bagian dari piringan Matahari yang tidak tertutup oleh piringan Bulan.
Gerhana cincin terjadi apabila piringan Bulan (saat puncak gerhana) hanya menutup sebagian dari piringan Matahari. Gerhana jenis ini terjadi bila ukuran piringan Bulan lebih kecil dari piringan Matahari. Sehingga ketika piringan Bulan berada di depan piringan Matahari, tidak seluruh piringan Matahari akan tertutup oleh piringan Bulan. Bagian piringan Matahari yang tidak tertutup oleh piringan Bulan, berada di sekeliling piringan Bulan dan terlihat seperti cincin yang bercahaya.

Gerhana matahari tahun 1999 di Perancis
Gerhana matahari tidak dapat berlangsung melebihi 7 menit 40 detik. Ketika gerhana matahari, orang dilarang melihat ke arah Matahari dengan mata telanjang karena hal ini dapat merusakkan mata secara permanen dan mengakibatkan kebutaan.
Gerhana Bulan

Gerhana bulan terjadi saat sebagian atau keseluruhan penampang bulan tertutup oleh bayangan bumi. Itu terjadi bila bumi berada di antara matahari dan bulan pada satu garis lurus yang sama, sehingga sinar matahari tidak dapat mencapai bulan karena terhalangi oleh bumi.

Dengan penjelasan lain, gerhana bulan muncul bila bulan sedang beroposisi dengan matahari. Tetapi karena kemiringan bidang orbit bulan terhadap bidang ekliptika, maka tidak setiap oposisi bulan dengan matahari akan mengakibatkan terjadinya gerhana bulan. Perpotongan bidang orbit bulan dengan bidang ekliptika akan memunculkan 2 buah titik potong yang disebut node, yaitu titik di mana bulan memotong bidang ekliptika. Gerhana bulan ini akan terjadi saat bulan beroposisi pada node tersebut. Bulan membutuhkan waktu 29,53 hari untuk bergerak dari satu titik oposisi ke titik oposisi lainnya. Maka seharusnya, jika terjadi gerhana bulan, akan diikuti dengan gerhana matahari karena kedua node tersebut terletak pada garis yang menghubungkan antara matahari dengan bumi.

Sebenarnya, pada peristiwa gerhana bulan, seringkali bulan masih dapat terlihat. Ini dikarenakan masih adanya sinar matahari yang dibelokkan ke arah bulan oleh atmosfer bumi. Dan kebanyakan sinar yang dibelokkan ini memiliki spektrum cahaya merah. Itulah sebabnya pada saat gerhana bulan, bulan akan tampak berwarna gelap, bisa berwarna merah tembaga, jingga, ataupun coklat.
Gerhana bulan dapat diamati dengan mata telanjang dan tidak berbahaya sama sekali.


Jenis-jenis gerhana bulan''
Gerhana bulan total
Pada gerhana ini, bulan akan tepat berada pada daerah umbra.
Gerhana bulan sebagian
Pada gerhana ini, tidak seluruh bagian bulan terhalangi dari matahari oleh bumi. Sedangkan sebagian permukaan bulan yang lain berada di daerah penumbra. Sehingga masih ada sebagian sinar matahari yang sampai ke permukaan bulan.
Gerhana bulan penumbra
Pada gerhana ini, seluruh bagian bulan berada di bagian penumbra. Sehingga bulan masih dapat terlihat dengan warna yang suram.
Penanggalan Masehi dan Hijriyah

Penanggalan masehi dan hijriyah berbeda berdasarkan dasar sistem perhitungannya. Penanggalan hijriyah berdasarkan peredaran bulan (qamariyah), sedangkan penanggalan masehi berdasarkan peredaran matahari (syamsiyah).
Dalam sistem penanggalan qamariyah, waktu diukur berdasarkan peredaran bulan mengelilingi bumi. Satu kali putaran membutuhkan waktu antara 29 hingga 30 hari. Karena itulah maka disebut bahwa 29 atau 30 hari itu sebagai satu bulan. Maka kalau kita bicara tentang perhitungan bulan, yang lebih tepat adalah sistem penanggalan qamariyah. Sebab satu bulan dalam penanggalan qamariyah adalah waktu yang dibutuhkan oleh bulan untuk mengelilingi bumi kita.

Menurut sistem qamariayah, setahun adalah waktu yang dibutuhkan bulan untuk mengelilingi bumi sebanyak 12 kali.
Sedangkan dalam sistem penanggalan syamsiyah, waktu diukur berdasarkan lamanya bumi mengitari matahari. Lamanya 365 1/4 hari dalam satu kali putaran. Dan disebut satu tahun.

Kemudian, waktu satu tahun itu dibagi menjadi dua belas tanpa dasar apapun kecuali kebijakan saja. Sehingga usia bulan itu menjadi berlainan, kadang 31 hari, kadang 30 hari, kadang 29 hari dan bisa juga 28 hari. Siapa yang menentukan? Para penguasa di masa Romawi kuno dahulu.
Oleh karena itu, satu tahun menurut sistem qamariyah berbeda dengan sistem syamsiah.
Pengaruh Revolusi Bumi

Revolusi Bumi adalah peredaran bumi mengelilingi matahari. Bumi mengelilingi matahari pada orbitnya sekali dalam waktu 365¼.waktu 365¼ atau satu tahun surya disebut kala revolusi bumi. Ternyata poros bumi tidak tegak lurus terhadap bidang ekliptika melainkan miring dengan arah yang sama membentuk sudut 23,50 terhadap matahari, sudut ini diukur dari garis imajiner yang menghubungkan kutub utara dan kutub selatan yang disebut dengan sumbu rotasi. Revolusi ini menimbulkan beberapa gejala alam yang berlangsung secara berulang tiap tahun diantaranya perbedaan lama siang dan malam, gerak semu tahunan matahari, perubahan musim, dan perubahan penampakan rasi bintang, serta kalender masehi.

Perbedaan Lama Siang dan Malam

Kombinasi antara revolusi bumi serta kemiringan sumbu bumi terhadap bidang ekliptika menimbulkan beberapa gejala alam yang diamati berulang setiap tahunnya. Peristiwa ini nampak jelas diamati di sekitar kutub utara dan kutub selatan.

Antara tanggal 21 Maret s.d 23 September
Kutub utara mendekati matahari, sedangkan kutub selatan menjauhi matahari
Belahan bumi utara menerima sinar matahari lebih banyak daripada belahan bumi selatan.
Panjang siang dibelahan bumi utara lebih lama daripada dibelahan bumi selatan
Ada daerah disekitar kutub utara yang mengalami siang 24 jam dan ada daerah disekitar kutub selatan yang mengalami malam 24 jam.
Diamati dari khatulistiwa, matahari tampak bergeser ke utara.
Kutub utara paling dekat ke matahari pada tanggal 21 juni. Pada saat ini pengamat di khatulistiwa melihat matahari bergeser 23,5o ke utara.

Antara tanggal 23 September s.d 21 Maret
Kutub selatan lebih dekat mendekati matahari, sedangkan kutub utara lebih menjauhi matahari.
Belahan bumi selatan menerima sinar matahari lebih banyak daripada belahan bumi utara.
Panjang siang dibelahan bumi selatan lebih lama daripada belahan bumi utara
Ada daerah di sekitar kutub utara yang mengalami malam 24 jam dan ada daerah di sekitar kutub selatan mengalami siang 24 jam.
Diamati dari khatulistiwa, matahari tampak bergeser ke selatan.
Kutub selatan berada pada posisi paling dekat dengan matahari pada tanggal 22 Desember. Pada saat ini pengamat di khatulistiwa melihat matahari bergeser 23,5o ke selatan.

Pada tanggal 21 Maret dan 23 Desember
Kutub utara dan kutub selatan berjarak sama ke matahari
Belahan bumi utara dan belahan bumi selatan menerima sinar matahari sama banyaknya.
Panjang siang dan malam sama diseluruh belahan bumi.
Di daerah khatulistiwa matahahari tampak melintas tepat di atas kepala.

Gerak Semu Tahunan Matahari

Pergeseran posisi matahari ke arah belahan bumi utara (22 Desember – 21 Juni) dan pergeseran posisi matahari dari belahan bumi utara ke belahan bumi selatan (21 Juni – 21 Desember ) disebut gerak semu harian matahari. Disebut demikian karena sebenarnya matahari tidak bergerak. Gerak itu akibat revolusi bumi dengan sumbu rotasi yang miring.

Perubahan Musim

Belahan bumi utara dan selatan mengalami empat musim. Empat musim itu adalah musim semi, musim panas, musim gugur,, dan musim dingin. Berikut ini adalah tabel musim pad waktu dan daerah tertentu di belahan bumi
Musim-musim dibelah bumi utara
Musim semi : 21 Maret – 21 Juni
Musim panas : 21 Juni – 23 September
Musim gugur : 23 September – 22 Desember
Musim Dingin : 22 Desember – 21 Maret
Musim-musim dibelah bumi selatan
Musim semi : 23 September – 22 Desember
Musim panas : 22 Desember – 21 Maret
Musim gugur : 21 Maret – 22 Juni
Musim Dingin : 21 Juni – 23 September
Perubahan Kenampakan Rasi Bintang

Rasi bintang adalah susunan bintang-bintang yang tampak dari bumi membentuk pola-pola tertentu. Bintang-bintang membentuk sebuah rasi sebenarnya tidak berada pada lokasi yang berdekatan. Karena letak bintang-bintang itu sangat jauh, maka ketika diamati dari bumi seolah-olah tampak berdekatan. Rasi bintang yang kita kenal antara lain Aquarius, Pisces, Gemini, Scorpio, Leo, dan lain-lain

Kita yang berada di bumi hanya dapat melihat bintang pada malam hari. Ketika bumi berada disebelah timur matahari, kita hanya dapat melihat bintang-bintang yang berada di sebelah timur matahari. Ketika bumi berada di sebelah utara matahari, kita hanya dapat melihat bintang-bintang yang berada di sebelah utara matahari. Akibat adanya revolusi bumi, bintang-bintang yang nampak dari bumi selalu berubah. Berarti rasi bintang yang nampak dari bumi juga berubah.

Kalender Masehi

Berdasarkan pembagian bujur, yaitu bujur barat dan bujur timur, maka batas penaggalan internasional ialah bujur 180o , akibatnya apabila dibelahan timur bujur 180o tanggal 15 maka di belahan barat bujur 180o masih tanggal 14, seolah-olah melompat satu hari. Hitungan kalender masehi berdasarkan pada kala revolusi bumi, dimana satu tahun sama dengan 365 ¼ hari. Kalender masehi yang mula-mula digunakan adalah kalender Julius Caesar atau kalender Julian. Kalender julian berdasarkan pada selang waktu antara satu musim semi dengan musim semi berikutnya dibelahan bumi utara. Selang waktu ini tepatnya adalah 365,242 hari atau 365 hari 5 jam 48 menit 46 sekon. Julius Caesar menetapkan perhitungan kalender sebagai berikut.
Lama waktu dalam setahun adalah 365 hari
Untuk menampung kelebihan ¼ hari pada tiap tahun maka lamanya satu tahun diperpanjang 1 hari menjadi 366 hari pada setiap empat tahun. Satu hari tersebut ditambahkan pada bulan februari. Tahun yang lebih panjang sehari ini disebut tahun kabisat
Untuk mempermudah mengingat, maka dipilih sebagai tahun kabisat adalah tahun yang habis di bagi empat. Contohnya adalah 1984,2000, dan lain-lain
Gerakan rotasi dan revolusi bumi
Bumi merupakan planet, secara urut planet-planet yang terdekat dari matahari adalah Mercurius, Venus, bumi Mars, Yupiter, Saturnus, Uranus, Neptunus dan Pluto. Bumi beredar menurut sumbernya dengan kala rotasi 27,9 jam dan jarak bumi matahari ± 150 juta km. Gerakan rotasi bumi ini akan mempengaruhi keadaan cuaca dipermukaan bumi, misalnya terjadi siang dan malam, dengan pergantian waktu ± 12 jam, untuk daerah diantara 23,50 Lintang Utara dan Selatan, dan ± 6 bulan untuk daerah-daerah disekitar kutub Utara dan Selatan, dari tanggal 21 Maret s/d 21 September di daerah kutub Utara mengalami siang hari dan di daerah kutub Selatan mengalami malam hari, dari tanggal, 21 September s/d 21 Maret di daerah kutub Utara mengalami malam hari dan di daerah kutub Selatan mengalami siang hari. Bumi beredar mengelilingi matahari dengan kala revolusi 365,25 hari ( 1 tahun ) kearah anti clockwise (berlawanan arah jarum jam) dan dengan kecepatan edar rata-rata 18,5 mil/detik. Oleh karena ekliptika berbentuk elips, maka matahari merupakan salah satu titik pusatnya, jadi jarak bumi matahari tidak selalu tetap melainkan berubah-ubah.

Titik Perihelium ialah dimana bumi beredar terdekat dengan matahari, terjadi pada tanggal 21 Desember. Titik Aphelium ialah titik dimana bumi berada terjauh dengan matahari, terjadi pada tanggal 21 juni. Karena revolusi bumi dan miringnya sumbu bumi terhadap ekliptika sebesar 66,50 mengakibatkan terjadinya perubahan musim didaerah yang terletak antara 23,50 Utara s/d Kutub Utara dan 23,50 Selatan s/d daerah Kutub

Lingkaran Tropik dan Kutub

Tropic of Cancer adalah lingkaran lintang 23,50 Utara atau jajar yang melalui lintang 23,50 Utara , dan Tropic of Capricorn adalah lingkaran lintang 23,50 Selatan atau jajar yang melalui lintang 23,50 Selatan. Jika matahari bersinar berada tepat di lintang 23,50 Utara maka bagian belahan bumi yang lain dari lintang 900 – 23,50 = 66.50 ke kutub tidak mendapatkan sinar matahari. Jajar yang melalui lintang 66.50 Utara disebut Artic Circle dan Jajar yang melalui lintang 66.50 Selatan disebut Artartic Circle atau lingkaran kutub Utara dan kutub Selatan. Setiap titik yang terletak pada lintang 66.50 minimum mengalami gelap 1 hari dalam 1 tahun dan setiap titik di kutub mengalami gelap 6 bulan dalam 1 tahun.

Musim/Seasons
Musim adalah salah satu pembagian utama tahun. Musim adalah hasil dari revolusi tahunan bumi mengelilingi Matahari dan kemiringan sumbu bumi relatif terhadap bidang revolusi. Di daerah beriklim sedang dan kutub, musim ditandai oleh perubahan intensitas sinar matahari yang mencapai permukaan bumi, variasi yang dapat menyebabkan hewan untuk pergi ke hibernasi atau bermigrasi, dan tanaman yang akan aktif.

Biasanya setahun dibagi menjadi 4 musim, yaitu:
- Musim semi (vernal)/spring
adalah satu dari empat musim didaerah nontropis, peralihan dari musim dingin ke musim panas.
Dibelahan utara bumi, diperkirakan musim semi terjadi pada tanggal 21 Maret-21 Juni dan dibelahan selatan bumi, diperkirakan musim semi terjadi pada tanggal 23 September-21 Desember.

- Musim panas (estival)/summer
adalah salah satu musim di negara yang berhawa sedang. Tergantung letak sebuah negara, musim panas dapat terjadi pada waktu yang berbeda-beda. Dibelahan tara bumi, diperkirakan musim panas terjadi pada tanggal 21 Juni- 23 September dan di belahan selatan bumi, diperkirakan musim panas terjadi pada tanggal 21 Desember- 21 Maret. Banyak negara, musim panas adalah musim liburan sekolah. Pada musim ini orang-orang suka pergi ke pantai untuk berjemur. Selain itu, pada musim panas buah-buahan dan tumbuh-tumbuhan sedang pada masa pertumbuhan penuhnya.
- Musim gugur/autumn
adalah salah satu dari empat musim di daerah beriklim sedang, masa peralihan dari musim panas ke musim dingin.Dalam zona beriklim sedang, musim gugur adalah musim di mana kebanyakan tumbuhan dipanen atau ditunai, dan pohon deciduous melepas daun-daun mereka. Dia juga merupakan musim di mana hari-hari bertambah pendek dan dingin, dan peningkatan presipitasi di beberapa bagian dunia.Di belahan utara bumi, musim gugur dimulai sekitar pada tanggal 23 September- 21 Desember, sementara di belahan selatan bumi musim gugur dimulai sekitar pada tanggal 21 Maret- 21 Juni.
- Musim dingin (musim salju)/winter
adalah musim yang paling dingin di bumi. Merupakan salah satu dari 4 musim di negeri-negeri yang beriklim subtropis dan sedang. Di belahan utara bumi, musim dingin dimulai sekitar pada tanggal 21 Desember- 21 Maret, sementara di belahan selatan bumi musim dingin dimulai sekitar pada tanggal 21 Juni- 23 September.

Di Indonesia merupakan daerah tropis maka dari itu di Indonesia hanya terdapat 2 musim yaitu musim kemarau dan musim hujan.
- Musim kemarau:
adalah musim di daerah tropis yang dipengaruhi oleh sistem muson. Musim kemarau dikenal sebagai musim kering. Untuk dapat disebut musim kemarau, curah hujan per bulan harus di bawah 60 mm/bulan (atau 20 mm per dasarian) selama tiga dasarian berturut-turut. Selain di Indonesia negara-negara yang sering mengalami musim ini adalah wilayah tropika di Asia Tenggara dan Asia Selatan, Australia bagian timur laut, Afrika, dan sebagian Amerika Selatan.
- Musim hujan:
adalah musim dengan ciri meningkatnya curah hujan di suatu wilayah dibandingkan biasanya dalam jangka waktu tertentu secara tetap. Musim hujan hanya dikenal di wilayah yang iklim tropis. Musim hujan dianggap mulai terjadi apabila curah hujan dalam tiga dasarian berturut-turut telah melebihi 100 mm/m2 per dasarian dan berlanjut terus.
-Musim pancaroba:
adalah masa peralihan antara dua musim utama di daerah iklim muson, yaitu antara musim hujan dan musim kemarau. Masa pancaroba biasa ditandai dengan tingginya frekuensi badai, hujan yang sangat deras disertai guruh, serta angin yang bertiup dengan kencang.
Pada masa pancaroba biasanya orang yang menderita penyakit saluran pernafasan atas, seperti pilek atau batuk, relatif meningkat. Masa ini juga banyak ditandai dengan perilaku khas beberapa hewan dan tumbuhan.

SMA TASIKMALAYA
TASIKMALAYA
GAMBAR SMA TASIKMALAYA

PERUBAHAN MUSIM DI BUMI



Sesungguhnya pada pertukaran malam dan siang itu dan pada apa yang diciptakan Allah di langit dan di bumi, benar-benar terdapat tanda-tanda (kekuasaan-Nya) bagi orang-orang yang bertakwa.” (QS. Yunus:6)

1. Rotasi Bumi dan Efeknya
Bumi kita berputar seperti gasing. Gerak putar Bumi pada sumbu putarnya ini dinamakan gerak rotasi. Bumi kita menyelesaikan satu putaran / rotasi dalam waktu 23h 56m 4,1s. Panjang interval waktu yang dibutuhkan Bumi untuk menyelesaikan satu rotasi dinamakan hari sideris.
Efek dari gerak rotasi Bumi ini adalah terbit-terbenamnya bintang-bintang, yang disebut juga sebagai pergerakan semu bola langit.
Bumi berotasi dari Barat ke Timur (berlawanan arah jarum jam dilihat dari kutub utara ekliptika), sehingga yang terlihat dari Bumi, pergerakan semu langit adalah dari Timur ke Barat.
Sumbu rotasi Bumi tidak sebidang dengan bidang edarnya mengelilingi Matahari (bidang berwarna kuning pada Gambar 1). Bidang edar Bumi mengelilingi Matahari ini dinamakan ekliptika. Terhadap ekliptika ini, equator Bumi membentuk sudut 23,5 derajat. Dengan kata lain, sumbu rotasi Bumi (berwarna merah pada Gambar 1) membentuk sudut 23,5 derajat terhadap normal bidang ekliptika (panah berwarna kuning). Sumbu rotasi Bumi sendiri tidak tetap mengarak ke posisi tertentu di langit. Sumbu rotasi ini bergerak perlahan relatif terhadap ekliptika, mengitari normal ekliptika dengan periode 25.800 tahun. Gerak sumbu rotasi Bumi ini dinamakan gerak presesi.

2. Revolusi Bumi dan Efeknya
Bumi kita bergerak mengedari Matahari. Gerak Bumi mengedari Matahari ini dinamakan gerak revolusi. Bumi menyelesaikan satu putarannya mengelilingi Matahari dalam waktu 365,2564 hari efemeris. Satu hari efemeris adalah 86.400 detik efemeris, dan 1 detik efemeris adalah panjang interval yang diukur dengan jam atom standar.
Panjang interval waktu yang dibutuhkan oleh Bumi untuk satu kali mengelilingi Matahari ini dinamakan sebagai tahun sideris.
Efek dari revolusi Bumi adalah perubahan penampakan posisi Matahari relatif terhadap bintang-

bintang yang berada di latar belakang. Dilihat dari Bumi, Matahari bergerak diantara bintang-bintang. Bumi bergerak mengitari Matahari berlawanan arah dengan jarum jam jika dilihat dari kutub utara ekliptika. Akibatnya, arah gerak Matahari ini pada bola langit berlawanan dengan arah gerak semu langit, yaitu dari Barat ke Timur. Pada bola langit (lihat Gambar 2), gerak Matahari tersebut adalah pada bidang ekliptika (yang berwarna merah) dalam arah A-B-C-D. Gerak Matahari sepanjang bidang ekliptika ini dikenal sebagai gerak tahunan matahari. Kecepatan gerak Matahari sepanjang ekliptika tidaklah konstan, karena pengaruh dari bentuk orbit Bumi yang elips. Karena bentuk orbit yang elips ini, jarak Bumi-Matahari berubah-ubah. Dan menurut Hukum Kepler yang mengatur pergerakan planet, semakin dekat jarak planet-Matahari, maka kecepatan orbitnya semakin besar. Akibatnya, efek bentuk orbit Bumi yang elips tercermin pada perubahan kecepatan gerak Matahari diantara bintang-bintang di bola langit.

Bidang ekliptika membentuk sudut 23,5 derajat terhadap equator langit (berwarna abu-abu). Titik-titik potong antara ekliptika dan equator ini dinamakan titik-titik equinox. Titik equinox tempat Matahari bergerak dari selatan equator (‘bawah’ equator) ke utara equator (‘atas’ equator) , — titik A pada Gambar 2 — dinamakan titik tanjak naik, atau titik vernal equinox (g). Sedangkan titik equinox tempat Matahari bergerak dari utara equator (‘atas’ equator) ke selatan equator (‘bawah’ equator) , — titik C pada Gambar 2 — dinamakan titik tanjak turun, atau titik autumnal equinox. Titik-titik terjauh dari equator yang bisa dicapai oleh Matahari, dinamakan titik-titik solstice. Titik terjauh di utara equator yang bisa dicapai Matahari (titik B pada Gambar 2) dinamakan titik summer solstice, dan titik terjauh di selatan equator yang bisa dicapai Matahari (titik D pada Gambar 2) dinamakan titik winter solstice. Dalam gerak tahunannya, Matahari mencapai titik vernal equinox sekitar tanggal 21 Maret, titik summer solstice sekitar tanggal 22 Juni, titik autumnal equinox sekitar tanggal 23 September, dan titik winter solstice sekitar tanggal 22 Desember.
Berkaitan dengan gerak revolusi Bumi, dikenal 3 macam interval yang dinamakan :
· Tahun tropis
· Tahun sideris
· Tahun anomalistis

1. Tahun Tropis
Tahun Tropis: Interval rata-rata Matahari melewati titik vernal equinox (g) -equinox rata-rata- secara berurut. Equinox rata-rata sendiri, bergerak ke arah barat dengan kecepatan rata-rata 50,3″ pertahun. Gerak ini berlawanan dengan gerak Matahari, atau dengan kata lain, equinox rata-rata menyongsong Matahari. Akibatnya, sebelum Matahari melengkapi 360º, Matahari telah kembali mencapai equinox rata-rata tersebut. Satu tahun tropis (dari pengama-tan) = 365,2422 hari efemeris.

2. Tahun Sideris
Tahun Sideris: Waktu yang dibut-uhkan oleh Mata-hari untuk menyelesaikan satu putaran penuh (360 derajat) pada bidang ekliptika. Satu tahun sideris = 365,2564 hari efemeris.

3. Tahun Anomalis
Tahun Anomalis: Interval rata-rata Matahari melewati perigee/apogee secara berurut (dari perigee/apogee kembali ke perigee/apogee). Garis nodal Bumi tidaklah diam, tetapi bergerak searah dengan gerak revolusi Bumi dengan kecepatan 11,25″ pertahun. Karenanya, saat Matahari melengkapi 1 putaran (360º) pada bola langit, titik perigee/apogee telah bergeser sejauh 11,25″, dan Matahari memerlukan waktu ekstra untuk kembali ke titik perigee/apogee tersebut. Satu tahun anomalis = 365,2390 hari efemeris.
Perbandingan panjang tahun:
tahun_sideris : tahun_tropis : tahun_anomalis = 360º : (360º-50,3″) : (360º+11,25″)

Rotasi Bumi

Karakter Bumi yang menciptakan siang dan malam.


Perputaran itu disebut rotasi atau diartikan sebagai perputaran bumi pada poros/sumbunya. Sumbu Bumi itu terbentang dari utara-selatan (garis tegak dan sedikit miring ke kanan). Garis utara-selatan Bumi tidak berhimpitan seperti pada sumbu globe (bola dunia) yang terdapat di ruang kelas kamu. Rotasi Bumi dari arah barat ke timur. Arahnya persis sama dengan revolusi Bumi mengelilingi Matahari .

Kecepatan putaran Bumi diukur oleh banyaknya putaran per satuan waktu. Bumi membutuhkan waktu 24 jam untuk melakukan satu putaran. Tepatnya 23 jam 56 menit 4 detik. Sekali rotasi, Bumi menempuh 3.600 bujur selama 24 jam. Artinya 15 derajat (bujur) menempuh empat menit. Dengan demikian, tempat-tempat yang berbeda 15 derajat akan berbeda waktu empat menit.

Maka itu, selain pergantian siang dan malam dan perbedaan waktu, rotasi Bumi menimbulkan beberapa fenomena ; gerak semu harian bintang dan perbedaan percepatan gravitasi di permukaan bumi.

Sebenarnya, akibat rotasi tersebut, benda-benda di Bumi mengalami gaya sentrifugal (gaya yang mengakibatkan benda akan terlempar keluar). Namun karena putaran Bumi sangat cepat, hal itu tidak bisa dirasakan.

Efek gaya sentrifugal itu baru dapat kamu rasakan ketika menaiki mobil dengan kecepatan tinggi dan melewati tikungan. Kamu akan merasa terlempar ke samping atau seperti ke sisi luar lingkaran itu.

Dalam sehari-hari, kamu bisa mengamati rotasi dalam bentuk lain. yakni pada permainan gasing dan yoyo. Dua permainan ini ibarat memiliki orbit yakni di bagian tengahnya sebagai pusat perputarannya. Lama putaran dua permainan itu tergantung pada bobotnya. Semakin berat, maka putarannya akan sebentar dan sebaliknya. nala dipa

Rencana Foto :
- Bumi dalam orbitnya dan mengelilingi Matahari
- Gasing


Pengaruh Putaran Bumi di Porosnya

Akibatnya terdapat dalam empat fenomena.

1. Pergantian Siang dan Malam
Rotasi Bumi akan membuat permukaannya menghadap dan membelakangi Matahari secara bergantian. Bumi akan mengalami siang bila menghadap Matahari, dan akan malam bila sebaliknya. Masing-masing panjang siang dan malam rata-rata selama 12 jam.

2. Perbedaan Waktu
Bumi sebenarnya dibagi-bagi berdasarkan jaring-jaring derajat yang disebut garis lintang dan garis bujur. Garis lintang adalah garis yang sejajar dengan garis tengah khatulistiwa. Sedang garis bujur adalah garis yang sejajar dengan garis tengah kutub.

Arah rotasi Bumi (dari barat ke timur) menyebabkan Matahari terbit di timur dan terbenam di barat. Orang-orang yang berada di daerah timur akan mengamati Matahari terbit dan terbenam lebih cepat daripada mereka yang berada di barat. Setiap 15 derajat bujur, suatu wilayah akan mengalami perbedaan waktu selama empat menit dengan wilayah lainnya.

Maka itu hadir istilah GMT atau Greenwich Mean Time yakni pedoman waktu yang berlaku international. GMT ada di kota London, Inggris yang ditetapkan sebagai wilayah dengan garis bujur nol.

3. Gerak Semu Harian Bintang

Bintang-bintang (termasuk Matahari) yang tampak bergerak sebenarnya tidak bergerak. Akibat rotasi Bumi (dari arah timur ke barat) yang membuat seakan bintang-bintang tersebut bergerak. Pergerakan tersebut dinamakan gerak semu harian bintang. Waktu yang diperlukan bintang untuk menempuh lintasan peredaran semu itu adalah 23 jam 56 menit atau satu hari.

4. Perbedaan Percepatan Gravitasi
Rotasi juga menyebabkan penggelembungan di wilayah khatulistiwa dan pemipihan di kedua kutub Bumi. Fenomena itu menyebabkan perbedaan percepatan gravitasi. Sebab, percepatan gravitasi berbanding terbalik dengan kuadrat jari-jari, maka percepatan gravitasi tempat-tempat di kutub lebih besar daripada di khatulistiwa

Pengaruh Rotasi Bumi

Dalam peredaranya mengelilingi matahari, bumi pun berputar pada porosnya atau sumbunya. Perputaran bumi pada sumbunya disebut rotasi bumi. Bumi berotasi pada porosnya dari arah barat ke timur. Arahnya persis sama dengan arah revolusi bumi mengelilingi matahari .

Kala rotasi bumi adalah 23 jam 56 menit 4 detik ,selang waktu ini disebut satu hari. Sekali berotasi, bumi menempuh 3600 bujur selama 24 jam. Artinya 10 bujur menempuh 4 menit. Dengan demikian, tempat-tempat yang berbeda 10 bujur akan berbeda waktu 4 menit. Rotasi bumi menimbulkan beberapa peristiwa yaitu :

1.Pergantian siang dan malam
2.Perbedaan waktu berbagai tempat dimuka bumi
3.Gerak semu harian bintang
4.Perbedaan percepatan gravitasi di permukaan bumi

Efek rotasi bumi:

1)Berlakunya efek Foucault dan Coriolis (kedua gaya ini merupakan akibat dari pergerakan kerangka non-inersial)
2)Pergerakan angin (konsekuensi dari efek Coriolis)

akibat rotasi bumi ;
1. terjadinya siang malam pada bagian bumi
2. Munculnya daya magnit (Daya tarik) bumi ke matahari

Akibat revolusi bumi
1. terjadinya musim (panas,dingin,semi)
2. munculnya daya magnit (daya tolak) bumi ke matahari.

Bumi berotasi sambil berevolusi, seperti klereng berputar sambil berjalan.

daya magnit bumi (Daya tarik dan daya tolaknya) menyebabkan bumi berevolusi sesuai dengan lintasanya ke matahari.

Bila Bumi tidak berotasi akibatnya :
1. Tidak adanya magnit bumi (daya tarik)
2. Manusia akan terbang berhamburan
3. Bulan akan menabrak bumi

Bila Bumi tidak Revolusi akibatnya :
1. Tidak ada magnit Bumi (Daya tolak)
2. Manusia aka lengket nempel dibumi,tdk bergerak.
3. Bumi menabrak matahari
A. Gerakan Bumi Tanpa kita sadari, bumi yang kita tempati tidak pernah berhenti berputar. Dapatkah kamu merasakan gerakan bumi? Lalu, gerak apa saja yang dilakukan bumi? Kemudian, akibat apa yang dirasakan kita sebagai penghuni bumi karena gerakkannya tersebut? Mari ikuti penjelasan berikut ini! 1. Gerak Rotasi Bumi yang kita diami ini selalu bergerak. Salah satu gerak yang dilakukan oleh bumi dan planet lainnya adalah rotasi. Rotasi bumi adalah perputaran bumi pada poros/sumbunya. Arah rotasi bumi dari barat ke timur. Untuk melakukan satu kali rotasi bumi memerlukan waktu 23 jam 56 menit 4 detik, dibulatkan menjadi 24 jam. Waktu untuk satu kali rotasi disebut kala rotasi. Setiap hari kita mengalami siang dan malam secara teratur. Pada pagi hari matahari terbit di sebelah timur tanda hari mulai siang dan tenggelam di sebelah barat tanda hari mulai malam. Kejadian alam tersebut disebabkan karena bumi berotasi. Ketika bumi berotasi, daerah-daerah di bumi yang terkena sinar matahari mengalami siang dan daerah-daerah di bumi yang tidak terkena matahari mengalami waktu malam. Setiap hari kita melihat matahari seolah-olah bergerak dari timur ke barat. Hal ini terjadi karena kita bergerak mengikuti rotasi bumi dari barat ke timur sedangkan matahari diam. Dengan demikian, kita akan melihat gerak semu harian matahari. Letak matahari yang seolah-olah berubah ini menyebabkan panas sinar matahari yang kita rasakan pada pagi, siang, dan sore berbeda-beda. Hal ini bukan karena jumlah sinar matahari yang sampai ke bumi berubah-ubah, tetapi karena arah sinar itu berubah-ubah sehingga luas permukaan yang terkena sinar berbeda-beda pula. Pada pagi dan sore hari sinar matahari datangnya miring sehingga daerah yang terkena sinar matahari cukup luas. Oleh karena itu, pada pagi dan sore hari matahari terasa hangat. Pada siang hari, sinar matahari datangnya tegak lurus sehingga daerah yang terkena sinar matahari lebih sempit daripada daerah yang terkena sinar miring. Oleh karena itu pada siang hari sinar matahari terasa lebih panas daripada pagi dan sore hari. Adanya rotasi bumi menyebabkan adanya perbedaan waktu di bumi. Perbedaan waktu antara satu tempat dengan tempat lain berdasarkan garis bujur tempat tersebut. Sekali rotasi bumi atau dalam 24 jam, setiap tempat di permukaan bumi telah berputar sebesar 360° bujur. Dengan demikian, setiap 15° bujur ditempuh dalam jangka waktu 1 jam. Setiap garis bujur yang jaraknya 15° atau kelipatannya disebut bujur standar. Waktu bujur standar disebut waktu lokal. Oleh karena itu, di permukaan bumi terdapat 24 waktu lokal. 2. Gerak Revolusi Gerak revolusi adalah gerakan bumi berputar pada orbitnya dalam mengelilingi matahari. Waktu yang diperlukan bumi untuk satu kali revolusi disebut kala revolusi. Kala revolusi bumi adalah 365 ¼ hari atau 1 tahun. Perhatikan letak matahari pada bulan Maret, Juni, September! Samakah kedudukan matahari sepanjang tahun? Ternyata sepanjang tahun kedudukan matahari seolah berubah-ubah. Antara bulan Maret-September kita melihat bayangan benda mengarah ke selatan. Hal ini terjadi karena kedudukan matahari ketika itu seolah-olah berada di sebelah utara. Sebaliknya, antara bulan September-Maret kita melihat bayangan benda ke utara. Hal itu terjadi karena kedudukan matahari ketika itu seolah-olah berada di selatan kejadian alam tersebut dinamakan gerak semu tahunan matahari. Gerak semu tahunan matahari adalah matahari seolah-olah melakukan pergeseran dari utara ke selatan dari khatulistiwa. Perhatikan pula perubahan musim sepanjang tahun! Ternyata dalam setahun, kita mengalami perubahan musim, yaitu musim hujan dan musim kemarau. Perubahan musim terjadi pula di belahan bumi utara dan selatan. Perubahan musim yang terjadi di belahan utara dan selatan adalah musim dingin, musim semi, musim panas dan musim musim gugur. Gerak semu tahunan matahari dan perubahan musim di permukaan bumi disebabkan karena bumi beredar mengelilingi matahari dan poros matahari miring 32½° dari garis tegak lurus dari orbitnya. Indonesia yang terletak di khatulistiwa hanya mengalami dua musim, yaitu musim hujan dan musim kemarau. Pada bulan Oktober sampai dengan Maret bertiup angin muson barat yang banyak membawa uap air sehingga di Indonesia mengalami musim hujan. Sedangkan, pada bulan April sampai dengan bulan September bertiup angin muson timur yang sedikit membawa uap air sehingga di Indonesia mengalami musim kemarau. Galileo Galilei Astronom Italia, Beliau menggunakan teleskop untuk mencari bukti bahwa Bumi dan planet-planet lainnya bergerak mengitari Matahari.
B. Gerakan Bulan Bulan merupakan anggota tata surya yang merupakan satelit bumi. Bulan tidak memiliki cahaya sendiri cahaya bulan yang memancar di malam hari adalah sinar matahari yang dipantulkan oleh permukaan bulan. Sebagai satelit bumi, bulan melakukan tiga gerakan sekaligus, yaitu berevolusi terhadap Bumi, berotasi dan bersama-sama bumi mengelilingi matahari. Untuk lebih jelasnya, ketiga gerakan tersebut akan diuraikan di bawah ini! 1. Revolusi Bulan Terhadap Bumi Revolusi bulan terhadap bumi adalah gerakan bulan mengelilingi bumi. Akibat gerakan bulan ini adalah perubahan penampakan bulan. Penampakan bulan tersebut dapat berbentuk bulan mati, bulan sabit, bulan separuh, bulan benjol, dan bulan purnama. Sebenarnya perubahan penampakan bulan karena luas permukaan bulan yang terlihat dari bumi berubah-ubah sesuai kedudukan bulan terhadap matahari dan bumi. Secara garis besar penampakan bulan dilihat dari bumi dibagi menjadi 4 bagian, yaitu sebagai berikut. a. Bulan baru atau bulan mati Pada saat terjadi bulan baru, posisi bulan berada di antara matahari dan bumi, sehingga permukaan bulan yang gelap(tidak terkena sinar matahari) mengahadap ke bumi. Oleh karena itu bulan tidak terlihat dari bumi. b. Kuartir pertama Dari posisi bulan muda atau bulan mati, bulan beredar ke arah posisi kuartir pertama begitu meninggalkan posisi bulan muda, bulan sudah terlihat seperti bentuk sabit. Bulan sabit terus makin besar sampai membentuk setengah lingkaran. Pada saat ini bulan berada di kuatir pertama. c. Kuartir kedua atau bulan purnama Pada posisi ini, bumi berada di antara bulan dan matahari. Seluruh permukaan bulan yang terang (terkena sinar matahari) menghadap ke bumi. Oleh karena itu, bulan terlihat lingkaran penuh dari bumi disebut bulan purnama d. Kuartir ketiga Dari posisi bulan purnama, bulan beredar ke arah kuartir ketiga begitu meninggalkan posisi bulan purnama, bulan sudah mulai mengecil menjadi bulan sabit penampakan bulan terus mengecil sampai terlihat sampai posisi pada kuarti pertama dari kuartir ketiga beredar kembali ke bulan baru atau bulan mati. Revolusi bulan dan rotasi bulan mengakibatkan terjadinya pasang naik dan pasang surut air laut. Ketika pasang naik, permukaan air laut akan naik. Sebaliknya jika pasang surut, permukaan air laut akan turun. Pada saat bulan berevolusi terhadap bumi, air laut di bagian bumi yang menghadap bulan akan tertarik gravitasi bulan sehingga terjadi pasang naik. Sebaliknya, air laut di bagian bumi yang tidak menghadap bulan akan pasang surut. Berdasarkan uraian di atas dapatkah kalian menyebutkan kembali akibat gerakan revolusi bulan terhadap bumi? 2. Gerakan Rotasi Bulan Bulan berputar pada porosnya. Kala rotasi bulan sama dengan kala revolusi bulan terhadap bumi sehingga permukaan bulan yang menghadap bumi selalu sama. Dengan demikian, jika kita mengamati permukaan bulan dari bumi hanya dapat mengamati satu permukaan saja, sedangkan permukaan lainnya tidak teramati. Untuk mengamati permukaan bulan lainnya para ilmuwan meluncurkan pesawat ruang angkasa ke permukaan bulan yang tidak pernah menghadap ke bumi. 3. Gerakan Revolusi Bulan Terhadap Matahari Bulan sebagai satelit bumi selalu mengikuti pergerakan bumi ketika bumi berevolusi terhadap matahari maka bulanpun berevolusi terhadap matahari. Dalam setahun, bulan mengelilingi matahari sebanyak 1 kali dan mengelilingi bumi sebanyak 12kali. Oleh karena itu, dalam setahun ada 12 bulan. C. Gerhana Bumi dan bulan adalah benda langit yang tidak memiliki cahaya sendiri. Jika bulan atau bumi terkena cahaya matahari maka pada bagian belakang bulan atau bumi akan terbentuk bayangan. Karena ukuran matahari jauh lebih besar daripada ukuran bulan atau bumi maka terbentuk dua macam bayangan berbentuk kerucut, yaitu umbra dan penumbra. Umbra atau bayangan inti bayangan di bagian tengah yang sangat gelap. Penumbra atau bayangan semu adalah bayangan samar-samar di sekeliling umbra. Jika dalam peredarannya, bumi memasuki bayangan bulan atau bulan memasuki bayangan bumi maka akan terjadi gerhana. Ada dua macam gerhana, yaitu gerhana bulan dan gerhana matahari. 1. Gerhana Bulan Gerhana bulan terjadi pada saat bulan purnama. Gerhana bulan terjadi jika bumi berada di antara matahari dan bulan, serta matahari, bumi, dan bulan berada pada satu garis lurus, sehingga bulan memasuki bayang-bayang bumi, atau cahaya matahari ke arah bulan terhalang oleh bumi. Gerhana bulan terjadi ketika bulan berada di penumbra dan umbra yang berlangsung selama ± 6 jam. Ketika bulan berada di penumbra disebut gerhana bulan penumbra. Ketika bulan sebagian berada di penumbra dan sebagian lagi berada di umbra disebut gerhana bulan sebagian. Sedangkan, ketika bulan berada di umbra disebut gerhana bulan total. Gerhana bulan total berlangsung selama ±1 jam 40 menit.
2. Gerhana Matahari Gerhana matahari terjadi pada saat bulan baru. Pada saat gerhana matahari, bulan di antara matahari dan bumi, serta matahari, bulan, dan bumi berada pada satu garis lurus. Sehingga bumi memasuki bayang-bayang bulan, atau cahaya matahari ke bumi terhalang oleh bulan. Perhatikan gambar berikut! Gerhana matahari dibedakan atas gerhana matahari sebagian, gerhana matahari total, dan gerhana matahari cincin. Gerhana matahari total adalah gerhana matahari yang diamati dari daerah umbra. Gerhana matahari total berlangsung selama ± 6 menit. info Harap mengulang inquiryGerhana matahari sebagian adalah gerhana matahari yang diamati dari daerah penumbra. Orbit bumi dan orbit bulan berbentuk elips. Oleh karena itu, jarak bumi-bulan tidak selalu sama tetapi berubah-ubah. Ketika terjadi gerhana matahari cincin; letak bumi-bulan pada jarak terjauh sehingga: a. kerucut umbra bulan lebih pendek daripada jarak bumi-bulan; dan b. bumi terkena perpanjangan kerucut umbra bulan. Perhatikan gambar di samping! Jangan sekali-kali melihat langsung pada saat terjadi gerhana matahari! Pada saat gerhana, sinar matahari masih sangat menyilaukan jika dilihat langsung oleh mata kita. D. Penentuan Penanggalan Kalender Berdasarkan Gerak Bumi dan Bulan 1. Kalender Masehi Kalender Masehi ditentukan berdasarkan kala revolusi Bumi terhadap Matahari. Satu kali revolusi bumi memerlukan waktu 365¼ hari. Kala revolusi bumi ini digunakan sebagai patokan penanggalan tahun syamsiah atau masehi. Satu tahun pada penanggalan syamsiah ditetapkan lamanya 360 hari yang terdiri dari dua belas bulan. Jumlahnya hari dalam setiap bulannya berbedabeda, ada yang 28 hari, 30 hari, dan 31 hari. Satu tahun ditetapkan 365 hari, sedangkan kala revolusi bumi 365 ¼ hari. Setelah empat tahun kekurangannya menjadi satu hari. Oleh karena itu, setiap empat tahun: a. jumlah hari pada bulan Februari bertambah satu menjadi 29hari; b. jumlah hari dalam satu tahun menjadi 366 hari. Tahun dengan ciri-ciri di atas disebut tahun kabisat. Agar mudah mengingat tahun kabisat, ditetapkan angka tahunnya habis dibagi empat. 2. Kalender Hijriah Kalender Hijriah ditentukan berdasarkan kala revolusi Bulan terhadap Bumi. Sekali berevolusi terhadap bumi, bulan membutuhkan waktu selama 29 hari 12 jam 44menit 3 detik. Kala revolusi bulan terhadap bumi ini dimanfaatkan oleh umat Islam untuk menentukan tahun Hijriah atau Komariah. Jumlah hari pada setiap bulan di kalender Hijriah berselang-seling 30 dan 29 hari. Dengan demikian, satu bulan dibulatkan menjadi 29,5 hari. Akibat pembulatan ini, maka pada tahun Hijriah pun ada tahun kabisat yang jumlah harinya 355 hari. Dalam 30tahun, terdapat 11 tahun kabisat. Satu tahun Hijriah lamanya 354 hari. Sedangkan satu tahun Masehi lamanya 365 hari. Oleh karena itu, tahun Hijriah lebih cepat 11hari daripada tahun Masehi. Hal ini menyebabkan hari-hari besar bagi umat Islam selalu berubah-ubah lebih cepat 11 hari dari pada tahun sebelumnya pada kalender masehi.